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a b s t r a c t

This paper presents a review of the current state of the art solutions to the problem of wind farm optimal
design. The aim of this work is to present the problem by identifying the most relevant issues involved in
the design of a wind farm, as well as to discuss the optimization techniques and wind farm models used
in the published literature.

An appropriate wind turbine layout is vital in order to obtain adequate performance in relation to the
exploitation and operation of the plant during its lifespan. There are several factors that influence wind
farm design, chief among them are the calculation of the overall energy yield by the wind farm and the
initial investment. The energy produced depends on the local wind conditions and the interference
caused by wind turbines nearby. The investment is mainly related to wind turbine acquisition, civil
works and electrical infrastructure. However, these are not the only items that influence the design of a
wind farm since economic indicators, environmental issues, local regulations, or the presence of wind
farms should also be taken into account when deciding the design of the wind farm.

Even in the case of the most simplified objective function (maximizing the annual energy produced)
the optimization problem cannot be solved by classical optimization techniques. To cope with this
problem, most authors have used meta-heuristics techniques which have proved to be efficient when
searching for the optimal solution to this problem.

The purpose of this paper is to review previous work by offering a clear outline of the latest advances,
as well as to highlight the main aspects which need to be taken into account when tackling the wind
farm design problem. In addition, in a conclusion of the review, future needs have been identified.

& 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper reviews the optimal wind turbine micro-siting
problem, offering a survey of the relevant technical literature
published on the latest developments on this issue.

Although most existing research focuses on the optimization of
onshore wind farms, the optimization techniques and the process
of assessing the annual energy produced by the wind farm can be
applied to offshore plants with minor variations. The main
difference is in the model used for calculation of the initial
investment, which must be tailored for the case of offshore wind
farms (OWFs).

The first step to be taken when planning a wind farm (WF) is
the site selection whereby several factors must be taken into
account, which include: the wind resource, land availability,
environmental conditions, possibility of connection to the elec-
trical transmission system, and proximity to access roads. This
issue has been addressed and solutions have been offered in
several papers [1–4] which enable the conditions necessary for
the implementation of a wind project on a particular plot of land
to be established.

After selecting the plot, the next step consists of solving the
problem studied in this work, i.e., the optimal selection of the
geographical location of each individual wind turbine (WT).
Although there are currently several examples of commercial
software available that enables the design of a WF to be under-
taken, the problem is usually tackled by experts or consultants by
following a set of guidelines, which ensures a minimum level of
production. The general trend (in the case of onshore WFs) has
been to iteratively place the WTs in positions where the wind
potential is the greatest, whilst observing a given distance
between WTs in the prevailing wind direction in order to prevent
any excessive wake effect (when a wind turbine captures part of
the kinetic energy of the wind that goes through its rotor, it
extracts a certain amount of it from the wind flow, generating a
wake of wind that is slower and more turbulent in the rear area).
In offshore WFs, the general trend has been to place the WTs in

regular structures, whilst maintaining a greater distance between
those WTs affected by the prevailing wind direction.

However, several studies show that such configurations are not
necessarily optimal in terms of total energy and final profitability
of the project [5–12]. This lack of optimality is mainly due to the
wake effect, since in a wind farm composed of a cluster of
turbines, this disturbance causes the wind speed field to be highly
dependent on the position of each individual WT. This can be
observed in Fig. 1, where the following arrangements of the
Middelgrunden offshore wind farm [7] are shown: (a) the actual
layout of the wind turbines; (b) a symmetrical optimized layout,
and (c) an irregular optimized layout. According to [7], the layouts
shown in (b) and (c) would provide an increase in the annual
energy produced (AEP) of 5% and 6%, respectively. Obviously, this
improvement in AEP would have significant consequences in
terms of annual revenue and hence on the profitability of the
project. The attention paid to optimization techniques applied to
the problem of the micro-positioning of WTs on a wind farm is
therefore justified.

The AEP is not the only factor to take into account when
undertaking the design of a WF, since it is also necessary to
consider other factors, such as the initial investment of the project,
(which depends, for an onshore WF, on aspects such as acquisition
of WTs, electrical infrastructure, access roads, and foundations,
among others), and issues that influence the annual cash flow,
such as maintenance and operation costs, and electrical losses.
Furthermore, in order to financially evaluate the project, it is
necessary to ascertain several economic variables, such as the sale
price of energy and the evolution of the interest rate. In Fig. 2, an
overview is presented of those diverse factors and relationships
that must be borne in mind when undertaking the design of a WF.
All these factors lead to the involvement of extremely complex
mathematics in the solution for the optimal micro-siting of WTs.

Furthermore, the design of WFs is not only subject to internal
factors but it can also depend on the design of other nearby WFs.
When designing a wind power plant, conflicting situations involving
other nearby projects have to be taken into account. These conflicting

Fig. 1. Layout of the Middelgrunden offshore wind farm: (a) actual, (b) optimized with symmetrical constraints, (c) optimized [7].
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situations can arise when there are other nearby wind farms close to
the location of the project under study. The wake effect produced by
other nearby wind farms can affect the AEP produced and hence the
economic profitability of the project. When nearby WFs already exist,
the perturbation of the airflow can be easily studied by analysing the
wake effect introduced by other wind farms. The problem is different
when nearby wind farms are planned to be constructed but they do
not already exist, in this situation decision making using game theory
can provide a suitable solution that minimizes the risk associated with
the decisions made by the developers of other wind farms [8]. This
circumstance can be highly significant in the case of offshore wind
farms where most countries have established delimited zones where
OWFs can be installed. Usually the distance between these zones is
not enough to completely avoid the wake effect produced by other
wind farms. This fact, together with the usual high compactness
degree (number of WTs per area) of offshore wind farms, leads
to considerable wake effect losses that can reach approximate values
10–15% [9].

A different conflicting situation can arise when a wind farm is built
with a relatively low compactness degree (this situation can be due to
limited financial resources of developers, regulation or market limita-
tions, etc.). In this case, if the developer does not own the terrain, there
is a possibility that later on other investors will choose to use the same
plot of land and could install wind turbines even in the middle of the
previously existing wind farm thus seriously affecting the expected
AEP and reliability of components due to the increased turbulence.
Without going into the question of the legal right of access to the wind
resource which is out of the scope of this paper [13], decision making
using game theory can be used in this case to minimize the impact of
installing new WTs in the same plot or even to design the WF so that
the location of new WTs would not be profitable.

A similar problem, but different since it does not involve
decision making under conflict, would be the construction of the
wind farm in several stages in order to properly design the wind
turbine layout at each stage to maximize the AEP while minimiz-
ing the initial investment. Real options theory seems to be a
suitable tool to tackle this problem [10].

Table 1 shows the typical cost breakdown of a WF, compiled
and adapted from [14–16]. As shown, most of the investment costs
are related with the acquisition of WTs. The cost of foundations
and electrical infrastructure also play an important role. However,
the fraction corresponding to each of the factors can vary depend-
ing on the particular characteristics of the WF under study.

The analyzed problem has been solved by different approaches:
from the simplest approaches whose aim is to maximize the AEP,

to the most complex economic models which take into account
the complete cost breakdown of the WF, in addition to several
restrictions (forbidden zones, maximum investment and maxi-
mum number of WTs), and which also study the economic risk
associated with uncertainty in the input data.

The more complex the approach, the greater the amount of
input data: for the maximization of energy it is necessary to
ascertain the wind resource, the WT characteristics, and the
dimensions of the plot. In the case of economic models of the
WF that are more complete, it is also necessary to ascertain the
costs of several factors, the evolution of economic indicators and,
where relevant, the uncertainty about the input data.

It is worth noting that even for the simplest approaches, (the
maximization of the AEP), the problem consists of both discrete
and continuous variables, and is, therefore, an integer mixed-type
problem. It exhibits manifold optimal solutions (convexity) and
cannot be completely described in an analytical form. Therefore,
the problem studied in this paper cannot be solved by classic
optimization methods. Hence, most authors have solved the
problem by meta-heuristic optimization techniques.

Another important factor to bear in mind is that the behaviour
of meta-heuristic optimization techniques is affected by the size of
the solution space. For the analyzed problem, the size of the
solution space depends on the number of existing cells in the
computational domain (the majority of the studies examined here
have performed the optimization over a discretized plot of land)
and the number of WTs. Moreover, according to the requirements
of the problem, this number of WTs can also be a variable to
optimize (thereby introducing additional complexity). In order to
illustrate the dramatic increase of the solution space of the
problem triggered by an increase in the WF size, the following
example is proposed: assuming that the number of turbines to be
installed at the WF, NWT, is known and that the area under study
has been divided into Ncell. The number of possible solutions can
be calculated as the number of combinations of Ncell taking NWT at
a time without repetition, and is given by the expression:

Nsol ¼
Ncell

NWT

 !
¼ Ncell!

Nt ! Ncell�NWTð Þ! ð1Þ

According to (1), it is possible to perceive the extraordinary
increase in the complexity of the problem with each increment in
the size of the WF. Therefore, as the size of the solution space
increases, the parameters of the optimization algorithm should be
appropriate for the complexity of the problem.

2. Literature review

In order to undertake the design of a wind farm, there are several
issues to first consider. Most of these issues have been exten-
sively studied in an individualized way, as a part of the complete

Table 1
Typical initial-cost breakdown of a WF.

Onshore Offshore

Wind turbines (%) 65–75 30–50
Electrical infrastructure (%) 1–10 15–30

Collector system 6–9 2–8
Transmission system 2–3 10–18
Substation 2–3 4–8

Civil work (%) 0–5 15–25
Installation and transport (%) 0–2 5–30
Other (%) 5 8
Overall cost (€/kW) 800–1100 1800–2650

Fig. 2. Relationships between the various modules/factors of the optimization
problem.
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micro-siting problem: the study of wind behaviour [17–21], analysis
of interactions between wind turbines (wake effect) [22–31], design
of auxiliary facilities (access roads [32], electrical infrastructure
[33–35], foundations [36–38]), reliability [39–42], economic issues
[10–43], environmental assessment [44–46], to name but a few. The
problem discussed in this paper covers all these factors, since the
position of each of the WTs on a WF is subject to a greater or lesser
extent to each of the factors mentioned above.

Currently, there are several commercial programs that enable
the wind resource to be assessed at the placement. The most
popular of these software packages is WAsP [47]. The main
objective of this tool is to perform the wind resource assessment
over the terrain under study by the taking into account the wind
climate observation previously obtained at nearby meteorological
station or at meteorological masts installed during the measure-
ment campaign. WAsP estimates the wind resource at the place-
ment by microscale flow analysis. However, the results obtained
by this method have been proved not to be accurate enough when
assessing complex terrain. Therefore, the last release of this soft-
ware, WAsP 11, includes a module that allows assessing the wind
behaviour in complex terrain using computational fluid dynamics
(CFD). WAsP also offers other complementary tools/modules to
help developers during the wind farm design such as evaluation of
the energy yield of a wind farm taking into account the wake
effect calculated using the Katic model [24], analysis of extreme
wind speed conditions, wind shears and turbulence, etc.

A similar piece of software is WindSim [48] which assesses the
wind resource in the placement under study using a CFD model
based on a 3D Reynolds-averaged Navier–Stokes solver. The main
objective of this tool is to pinpoint locations with better wind
speed conditions and low turbulence in complex terrain so that
designers can identify the most suitable positions for wind
turbines during the wind farm design process.

In addition, Meteodyn [49] provides similar services by esti-
mating the wind resource over the plot under study by means of
CFD simulation. This software also allows integrating the results
obtained with data provided by mesoscale analysis performed
using other sources. Meteodyn also calculates the energy pro-
duced by a given WT′s layout taking into account the Katic model
[24] when evaluating the wake effect.

The main objective of all the above-mentioned software pro-
ducts is the assessment of wind resource which is vital informa-
tion when undertaking a wind project. However, despite these
tools enabling developers and designers to decide on wind farm
design through assessing the annual energy produced by a wind
farm for a given layout, the problem of optimizing the wind
turbine layout is not the main aim of these tools. Nevertheless,
there are other software packages which tackle the problem of
optimizing WT layout.

Windfarmer [50] optimizes the layout of a wind farm for
maximum return of investment. The computation of wake effects
is performed by CFD based on a Reynolds-averaged Navier–Stokes
solver. However, no in depth details of the optimization algorithm
and the objective function used are provided. Additional features
of Windfarmer enable the assessment of aspects such as uncer-
tainty, noise, visual impact and electrical infrastructure among
others.

WindPro [51] addresses the problem of optimizing the wind
turbine layout by optimizing the annual energy produced by the
wind farm. The wake effect is modelled using the Katic model [24].
This software optimizes the wind turbine layout according to
whether or not the desired layout is random (the optimization
method consists of sequentially adding WTs on the positions with
maximum available energy), or symmetrical (WTs are located at
fixed distances with the objective of optimizing the separation and
angles among wind turbines). It is also worth mentioning the

noise calculation module that allows assessing the noise impact
and finding a suitable wind turbine layout which will meet noise
requirements.

OpenWind [52] is an open source software that also tackles the
optimization of the wind turbine layout of wind farms. The
objective is to minimize the cost of energy production but no
further details are provided about the optimization method used.
Other modules include the calculation of deep array wake effect
based on the modified Katic model [24], shadow flicker and
uncertainty evaluation.

To date, several publications in relevant peer-reviewed scien-
tific journals have appeared in which the optimization of a
mathematical model of the wind farm has been addressed in
order to undertake the optimal positioning of the WTs. The
problem was presented by Mosetti et al. [53]. The objective was
to maximize the AEP and to minimize the installation costs by
assuming a rather simplified cost model of the wind farm (based
on economies of scale and the overlapping of wakes). The
optimization was performed by means of a genetic algorithm
(GA) which selected the position of the WTs over a discretized plot
of land. In 2001, Kiranoudis et al. [54] studied the optimization of
the number of WTs on a WF by developing an analytical model of
overall efficiency of the wind farm. Aytun Ozturk and Norman [55]
used the cost model of the WF proposed by Mosetti et al., but in
this study the objective function was slightly different. Although
the authors initially proposed non-linear programming methods
in order to optimize a set of simple cases, Aytun Ozturk and
Norman [55] concluded that these methodologies are not applic-
able to the optimization of complex and more realistic cases, and
hence in a second instance the authors proposed a heuristic
optimization technique: a greedy algorithm.

A year later, Grady et al. [56] presented new work with the
purpose of optimizing the layout of the WTs by means of a GA, but
also included some improvements in the economic model regard-
ing the work of Mosetti et al. Castro et al. [57] proposed the
optimization through a GA that took into account a more complex
and realistic cost model of the WF than that suggested in previous
work. Marmidis et al. [58] addressed the same economic model
proposed by Grady et al., but this time optimized by a Monte Carlo
simulation. Elkinton et al. [59] proposed the levelized cost of
energy (LCOE) for the case of offshore WFs. Şişbot et al. [60]
suggested a multi-objective GA applied to a case study on the
island of Gökçeada in Turkey which maximized the AEP and
minimized the cost function proposed by Kiranoudis et al. [31].
Wan et al. [61] proposed an innovative approach which performed
the optimization by means of a particle swarm optimization (PSO)
algorithm. The main innovation included in that work was the
consideration of a continuous computational domain rather than
the discrete domain used in previous work. Mustakerov et al. [62]
presented a study whose objective was the optimal selection of
the WT model and diameter of the turbine based on a combina-
torial approach that took into account the geographical distribu-
tion of WTs arranged in regular patterns. Kusiak and Song [63]
proposed optimizing a multi-objective function by a strong Pareto
evolutionary algorithm (SPEA) by considering a continuous com-
putational domain, but in this case, over a circular plot of land. GAs
are again addressed by Emami et al. [64]. In that paper, a new
codification of the individual is proposed while the cost model of
the wind farm remains the same as that implemented in [56].
Serrano et al. [65] retake the approach introduced by Castro et al.
and include many aspects in the economic model such as for-
bidden zones, cost of foundations, and access roads. Serrano et al.
[66] extended this work in 2011 by also including the optimal
design of the electrical system of the WF through the study of its
influence on the micro-siting problem of the WTs. Saavedra et al.
[67] optimized a wind farm model, similar to that proposed by
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Castro et al., by means of a GA and analyzed the influence of initial
solutions obtained by a greedy algorithm on the final solution.
Archer et al. [68] modelled a coefficient in order to consider the
wake effect between wind turbines with the purpose of tackling
the problem using Mixed Integer Linear Programming. Changsui
et al. [69] optimized the objective function, given by Grady, by
means of a fast greedy algorithm. In 2012 Ekonomou et al. [71]
studied the selection of the optimum number of wind turbines by
using artificial neural networks. Wan et al. [70] optimized the
work proposed in [61], through a Gaussian particle swarm opti-
mization (GPSO). Serrano et al. [72] studied the optimization of
WFs included risk analysis techniques in order to take into account
the uncertainty in wind resource. A similar approach was intro-
duced by Messac et al. [73] who minimized the standard deviation
of the unitary cost of energy by means of a PSO algorithm.
Chowdhury et al. [74] optimized a new cost model of the wind
farm based on the rotor diameter of the WTs by means a PSO
algorithm. Eroğlu and Seçkiner [75] proposed an ant colony
optimization (ACO) algorithm to optimize the same WF model as
the proposed by Kusiak and Song [63]. Wagner et al. [76] max-
imized the AEP yield by the WF by means an effective local search
algorithm. Rajper and Amin [77] proposed a GA in order to obtain
the optimal number of WTs by minimizing the cost per unit
power. Serrano et al. [78] also proposed an iterative method for
the optimization of the layout of large offshore plants based on the
rapid fading of the wake effect with increasing distance.

Additionally, there are other scientific papers, conference pre-
sentations, and technical reports that also address the optimiza-
tion of the layout of wind turbines [79–130].

Among these, it is worth mentioning the work developed by
Huang [79], [80] which introduced some enhancements the GA in
order to improve the performance of the optimization algorithm.
Wang et al. [81], [82] which analyzed the influence of the type of
computational domain on the solution of the problem. In parti-
cular, the analysis focuses on the shape of the cell used for the
discretization of the terrain. Wan et al. [83–85] optimized the
problem by different techniques as a real-coded GA and a PSO
algorithm. Chen et al. [86] included in the problem the possibility
of selecting among several plots depending on the cost of land.
Messac et al. [88–93] conducted several studies by analysing the
influence of aspects as uncertainty, land configuration and terrain
availability. Kwong et al. [96] studied the noise impact on the
position of the turbines. Also Kwong et al. [97] conducted a similar
study, but in this case took environmental impact into account.
Castro et al. [111] proposed two nested GAs in order to optimize
simultaneously the wind turbines layout and the electrical infra-
structure. Salcedo et al. [115] made a previous review about the
computational techniques applied to the WTs micro-siting
problem. Finally, the optimization of a particularized model
for offshore wind farms is proposed in [113, 114, 117, 123,124,
126–128,130].

3. Objective functions

This section describes the objective functions used in the
analyzed works, starting with the simplest proposals, (which aim
to maximize the AEP), to more complex models which take into
account a complete economic model of the wind farm.

Maximization of the AEP of the wind farm is proposed by
Kusiak et al. [60], and Wan et al. [74]. The annual energy
generated, EWF, is calculated taking into account the power curve
of the jth WT, PWT j(u), the actual wind speed while considering
the wake effect, u′, and the wind speed probability for the ith wind

rose sector, pij(u′):

EWF ¼ T ∑
Ns

i ¼ 1
∑
NWT

j ¼ 1
pðSijÞ

Z uco j

uci j

PWT jðu′ijÞpijðu′ijÞdu ð2Þ

where T is the number of hours per year (T¼8760 h), p(Sij) is the
probability of occurrence for wind direction, i, at the position of
the jth WT, Ns is the number of sectors into which the wind rose
has been divided, and uci j and uco j are the cut-in speed and cut-out
speed, respectively.

Mosetti [53] proposed maximizing the AEP with the minimum
cost of the wind farm by minimizing the following expression:

Obj¼ 1
EWF

�w1þ
costtot
EWF

�w2 ð3Þ

where w1 and w2 are the weights selected arbitrarily and costtot
the total cost of the WF:

costtot ¼NWT �
2
3
þ1
3
� e�0:00174�N2

WT

� �
ð4Þ

Aytun Ozturk and Norman [55] studied the maximization of
profit, calculated as:

Prof it ¼ pkW h�
costtot
EWF

� �� �
� EWF ð5Þ

where pkW h is the selling price of energy and costtot is the total
cost of the WF proposed by Mosetti in (4).

The minimization of the ratio Cost/AEP is studied by [56,58,69],
also using the cost model proposed in Eq. (4).

Obj¼ costtot
EWF

ð6Þ

A new approach to the problem was introduced by Castro et al.
[57] by maximizing the net present value (NPV) defined by
expression (7).

NPV ðxÞ ¼ CF1ðxÞ
1þr

þ CF2ðxÞ
ð1þrÞ2

þ⋯þ CFtðxÞ
ð1þrÞLT

� IWFðxÞ ð7Þ

where CFi is the cash flow of each year, IWF is the initial investment
of the wind farm, x is the configuration of the wind farm, LT the
lifetime of the project, and r is the discount rate of money. This
approach enables a more complete and realistic model of eco-
nomic behaviour of the wind farm to be considered. This work was
extended by Serrano et al. [65] who introduced new economic
aspects, such as the necessary investment in wind turbine founda-
tions and access roads in the case of onshore wind farms. Serrano
et al. [66] also entered the problem of electrical infrastructure
optimum design through a secondary optimization algorithm.
Saavedra et al. [67] optimized the layout of WTs by taking into
account the NPV according to Eq. (7) and considering the costs of
electrical connections between turbines and road construction.

A new approach was presented by Serrano et al. [72] who
introduced probabilistic treatment of the problem using techni-
ques of decision making in a risk environment. Two different
objective functions were used depending on the decision criterion:
maximum expected value or maximum expected utility, based on
utility theory. With the first approach, the objective is to find the
wind farm configuration with the maximum expected value of
NPV:

EVi ¼ ∑
m

j ¼ 1
NPVij � pj ð8Þ

where m is the number of scenarios, pj is the probability of each
scenario, and NPVij is the NPV of each considered layout and
scenario.
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The maximum expected utility criterion aims to maximize the
expected utility:

EUi ¼ ∑
m

j ¼ 1
uðNPVijÞ � pj ð9Þ

where u(NPV) is the utility for a given value of the NPV calculated
using the expression:

uðNPVðxÞÞ ¼
1� e� ðNPVðxÞ �NPVmin Þ=ρ

1�e� ðNPVmax �NPVmin Þ=ρ if ρa1
NPVðxÞ�NPVmin
NPVmax �NPVmin

if ρ-1

8<
: ð10Þ

where ρ is the parameter of risk tolerance.
Messac et al. [73] also studied the uncertainty in the wind

behaviour by minimizing the following objective function.

Obj¼ sCOE
COE

ð11Þ

where COE is the cost of energy, calculated by (12), and sCOE is its
standard deviation.

COE¼ Costf arm
EWF

ð12Þ

The design of offshore wind farms has been studied by Lackner,
[123] who took aspects into account, such as turbine cost, support
cost structure and the electrical Interconnection cost, by minimiz-
ing the levelized production cost (LPC):

LPC ¼ IWF

af EWF
þCO&M

EWF
ð13Þ

where af is the annuity factor and CO&M are the costs of operation
and maintenance.

As can be seen, several objective functions have been used to
optimize the wind turbine layout. Most of the studied works have
analysed the simplified economic model introduced by Mosetti
[53] which is in fact justified because the aim of these works was
to show the ability of the proposed optimization methods. How-
ever, more complex and realistic models of the economic beha-
viour of the project have been introduced in other works in order
to analyse the influence of aspects such as foundations, electrical
infrastructure and uncertainty of input data, etc.

4. Energy production model

The evaluation of AEP is essential in order to analyze the micro-
siting of WTs. In the works studied in this literature review, several
statistical models of wind behaviour, the WT power curve and the
wake effect have been proposed.

4.1. Behavioural model of the wind

The statistical behaviour of the wind is typically modelled by
two different factors: wind direction and wind speed.

The wind direction is represented by the probability of occur-
rence for each of the sectors that make up the wind rose. A wind
rose of thirty-six sectors is the most common discretization used
[53,55,64,70]. Other studies have used wind roses divided into
twenty-four [60], sixteen [64] and eight sectors [54,62,63]. Finally,
[55] used a model of unidirectional wind.

The wind intensity model most widely used in the studies
analyzed is a discretized distribution of wind speed made up of
several averages for each of the wind directions [53,56,58,
60,64,69,93]. However, the behaviour of the wind speed is typi-
cally characterized as a Weibull distribution [131,132]. The Weibull
density function is defined by the parameters of scale, C, and
shape, K, as shown in Eq. (14). The scale parameter, C, (usually take

values between 5 and 12 m/s, depending on the location) is related
to the average wind speed and shows how windy, on average, is
the location. The shape parameter, K, (usually between 2.0 and 2.4)
indicates how pointed the distribution is. This approach, adopted
in [57,63,65–67,70], and [72], represents the evolution of wind
speed over a long period of time, as shown in Fig. 3 by means of
the cumulative probability versus the discrete distribution repre-
sented by the average speeds.

pðvÞ ¼ K
C
� v

C

� �K�1
� e� v

Cð ÞK ð14Þ

As can be seen from the results shown in Fig. 3, wind behaviour
differs considerably depending on the approach. As previously stated,
it is widely accepted that wind behaviour can be properly character-
ized by the Weibull distribution. Nevertheless, the use of discrete
distributions can be justified in those studies where the aim is to show
the ability of an optimization method rather than to analyse the wind
farm layout using a more realistic objective function. The main
advantage of using a discrete distribution is that the objective function
can be evaluated using a relatively low computational cost, since the
AEP is assessed by considering a few values of wind speed whilst the
evaluation of the AEP by the Weibull distribution requires the
integration of the cumulative distribution function that is a more
demanding process in terms of computational effort.

4.2. Model calculation of the wake effect

Two analytical models, proposed by Jensen [22,23] and Katic
[24] for the calculation of the wake effect, have been used in the
studies analyzed in this review.

The model proposed by Jensen has been used in [53,56,58,
60,64,67], and [69], while the Katic model has been applied to the
optimal layout problem of WTs in [63,65,66,70,72,75,77] and [91].

According to Jensen [22,23], the wind-speed decay produced in
the airflow when the wind passes through the rotor of a wind
turbine, (see Fig. 4), is calculated by the expression:

u¼ u0 1� 2a

1þα d
r1

� �� �2
2
64

3
75 ð15Þ

where a is the axial induction factor or inflow factor that is related
to the thrust coefficient, CT, according to Eq. (17), d is the distance
to the downwind WT, r1 is the radius of the wake at the position of
the downwind WT, u0 is wind speed in free flow, and α is the
entrainment constant calculated by the expression:

α¼ � 0:5

ln z
z0

� � ð16Þ

Fig. 3. Cumulative probability depending on wind-speed behavioural model
assumed in the studies analyzed.
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where z is the turbine hub height and z0 is the roughness length
that depends on the type of terrain as shown in Table 2 [133].

According to Jensen [22] the thrust coefficient of the WT, CT,
and the radius of the wake downstream, r1, are directly related to
the axial induction factor, a, and the rotor diameter, R, using the
Betz relations:

CT ¼ 4að1�aÞ ð17Þ

r1 ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a
1�2a

r
ð18Þ

The wake model proposed by Katic [24] takes the balance of
momentums and the theory of Betz into account. The speed inside
the wake is determined by the following equation:

uðdÞ ¼ u0 1� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�CT

p� � D
DðdÞ

� �2
 !

ð19Þ

where D is the rotor diameter and D(d) is the diameter of the
downstream wake calculated by expression (20) as a function of
the wake effect constant kW.

DW ðdÞ ¼Dþ2kWd ð20Þ

The recommended values of the wake effect constant, kW, are
0.075 in onshore facilities and 0.05 in case of an offshore wind
farm [47].

Both the Jensen [22,23] and Katic [24] wake effect models
require similar computational effort. However, the Katic model is
the most widely accepted model by the wind energy industry,
since it allows obtaining accurate results (in the case of
non-complex terrains) using a relatively simple mathematical
formulation.

4.3. Characteristics of the wind turbine: Power curve and thrust
coefficient curve

The power output as a function of wind speed has been
modelled using two separate approaches (see Fig. 5):

� The theoretical equation resulting from applying the laws of
Betz and the momentum in the airflow passing through the
surface swept by the blades of the WT (taking into account the
limit of maximum rated power). This approach has been used
in [53,56,58,61,63,64,67,69,75–77] and [70].

� The experimental curve of wind-speed power supplied by the
WT manufacturer [65,66], and [72].

Another major feature of the WT to be considered is the thrust
coefficient, CT, since, as can be observed in expression (19), the
wind speed decay in the wake depends on the thrust coefficient.
To date, only [114], and [128] have considered a CT value variable
depending on wind speed in accordance with the experimental
curve provided by the manufacturer, [17] proposes calculating the
wake effect by means of a theoretical evolution of the CT with the
wind speed, while any remaining work considers a constant value.
This decision is justified (especially in cases in which the wind
speed has been modelled on the mean value), since, as shown in
the example in Fig. 6, the experimental thrust coefficient remains
at very similar values for a wide range of wind speeds (between
about 4–13 m/s).

As can be observed in Figs. 5 and 6, the features of the wind
turbine, i.e., wind power and thrust coefficient curves, differ when
considering theoretical or experimental values. It is worth noting
that considering a fixed value can lead to a significant error when
evaluating the wake effect, since the lower the thrust coefficient
the lower the wind speed deficit due to the wake effect. There-
fore, this hypothesis may lead to underestimating the AEP.

Table 2
Typical surface roughness lengths.

Type of terrain Roughness length, z0 (m)

Water surface 0.0002
Open farmland, few trees and buildings 0.003
Villages, countryside with trees and hedges 0.1
Cities, forests 0.7

Fig. 5. Wind turbine experimental and theoretical power-speed curve.

Fig. 6. Thrust coefficient curve: (i) experimental curve, (ii) theoretical curve, (iii)
fixed value.

Fig. 4. Schematic representation of the wind speed field in the wake.
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Nevertheless, as in the case of the simplified wind behavioural
model, this assumption can be justified in those works with the
objective of studying the performance of the optimization
techniques.

5. Problem constraints

In order to address the problem in a realistic and flexible way,
several authors have proposed restrictions inherent to the micro-
positioning problem of WTs:

� Land available. All the research analyzed has considered the
optimization of the layout of WTs over a finite area, and hence
the position of all the WTs is limited by the limits of the plot.

� Forbidden zones. In [65–67] and [72], areas are proposed where
no wind turbine can be placed. In this way, it is possible to take
into account environmental constraints or plots of land with a
complex shape.

� Maximum investment. [64–67] and [72], take into account the
limitation of the maximum investment to be made if the
investor has limited capital available to start the project.

� Maximum number of WTs. It is possible that the maximum
number of WTs or the maximum rated power of the WF is
limited by government rules. Therefore, in [57,62,65,66,72] and
[75], the way this restriction affects the configuration of the
wind farm is studied.

� Distance between wind turbines. The studies [63,67,70,75,76]
and [88] take the constraint of minimum distance between
WTs into account, since for technical reasons it is not recom-
mended to place wind turbines too close to each other.

� Electrical infrastructure. In [66], the complete design of the
wind farm is studied by incorporating the design of the
electrical system and studying its influence on the layout of
the WTs. This work therefore also includes constraints, such as
forbidden areas that cannot be crossed by electrical lines and
the capacity limit of power transmission of medium voltage
(MV) and high voltage (HV) lines.

As can be seen, the objective of the problem constrains is to make
the problem formulation as realistic as possible by taking into account
the typical features of the wind power project. In general terms,
adding realistic constrains to the problem involves, besides an incre-
ment in the complexity of the problem formulation, a higher degree of

difficulty for the optimization process, since these constrains usually
make the problem more discrete/discontinuous (as the search space
becomes less continuous).

6. Optimization algorithms

As previously stated, the micro-siting problem of WTs cannot
be solved by classic optimization techniques. Therefore, except in
the case of [68], in which a fitted objective function for two WTs is
optimized by a gradient search algorithm, the techniques most
commonly used have been meta-heuristic optimization algo-
rithms. In particular, the most widely used optimization method
is that of GAs. Such techniques have been applied to the design of
wind farms in [56,57,60,64–66] and [67]. GAs operate on a
population of individuals [134–136]. Each individual is a potential
solution to the problem and is typically encoded as a string of
binary numbers as in the case of [56,57,60], and [64] although
other codifications are also common, such as real numbers used in
[64–66], and [67]. After generating the initial population, ran-
domly or by a heuristic method such as in [67], the algorithm
makes the population evolve sequentially and iteratively, by
applying three operators: selection, crossover, and mutation.

The PSO algorithm was developed by Eberhart and Kennedy
[137,138], based on an analogy of swarms of birds and fish
schooling. The particles move through the hyper-dimensional
search space. These techniques have been successfully applied to
the problem described in this paper in work performed by Wan
et al. [61,70], and Messac et al. [88], who all obtained satisfactory
results over a continuous computational domain.

Greedy algorithms have been applied in the works of Aytun
Ozturk and Norman [55] and Changshui et al. [69]. These techni-
ques consist of sequentially introducing a new WT at the best
position available in each iteration. In this way it is possible to
quickly obtain a local optimum solution to the problem. Saavedra
et al. [67] used a Greedy algorithm in order to obtain the initial
population to be optimized by the GA.

Kusiak, et al. [63] proposed multi-objective optimization
through an SPEA algorithm [139,140] by performing the optimiza-
tion over a continuous computational domain and optimizing
simultaneously the AEP and a penalizing function that takes into
account the constrains of the problem.

The ant colony optimization algorithm [141,142] is based on the
behaviour of ants in their search for food. Eroğlu and Seçkiner [75]

Table 3
Summary of main features of the work covered in the literature review.

Mostetti
et al.

Ozturk and
Norman

Grady
et al.

Castro
et al.

Serrano
et al.

Saavedra
et al.

Messac
et al.

Wan
et al.

Kusiak and
Song

Optimization method GA Greedy .GA GA GA GA PSO PSO SPEA
Computational domain Discrete Discrete Discrete Discrete Discrete Discrete Continuous Continuous Continuous
Forbidden zones No No No Yes Yes Yes No No No
Investment limit No No No Si Yes No No No No
Wake-effect model Jensen - Jensen - Katic Jensen - Jensen Jensen
Thrust coefficient 0.88 - 0.88 - 0.88 - - 0.88 0.8
Wind-rose sectors 36 8 36 1 8 16 - 36 24
Wind behaviour Mean Mean Mean Weibull Weibull Weibull Mean Mean Weibull
Power curve Theoretical Theoretical Theoretical Experimental Experimental Theoretical Theoretical Theoretical Theoretical
Electrical infrastructure

design
No No No No Yes Yes No No No

Objective function (1) (2) (3) (4) (4) (4) (6) (5) (5)

1—Minimize weighting relationship between Cost and AEP.
2—Maximize profit.
3—Minimize ratio of Cost–AEP.
4—Maximize NPV.
5—Maximize AEP.
6—Minimize standard deviation of COE divided by COE.
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used an ACO algorithm based on a novel pheromone updating
scheme over a continuous domain obtaining the optimal solution
with a reasonable computational time.

Finally, further optimization methods used in other scientific
publications are also featured: Wagner et al. [107] proposed a local
search optimization method; Acero et al. [102] and Bilbao et al.
[109] optimized the problem by simulated annealing; while
Fredrich et al. [106] and Wagner et al. [107] proposed the
covariance matrix adaptation evolution strategy (CMA-ES) as the
optimization algorithm.

As it can be seen, in all cases meta-heuristics optimization
techniques have been used due to the nature of the problem. GA
has been the most widely used optimization method showing a
proper performance. However, other techniques such as PSO,
SPEA, ACO or CMA-ES have also been proved to be suitable
methods to tackle this problem presenting, in some cases, addi-
tional advantages, e.g., considering a continuous domain or multi-
objective optimization.

7. Key features

Table 3 shows a summary of the most relevant work analyzed
herein on the problem of the optimal positioning of wind turbines,
and highlights the main features concerning the objective func-
tion, production, and economic model of the wind-farm energy
used in each study.

8. Conclusion

In this paper, a review has been carried out of the literature on
earlier work on the problem of the optimal location of wind
turbines. In general terms, from among the studies analyzed, two
main trends are identified:

� Application of several optimization algorithms by optimizing a
relatively simple economic model of a wind farm which take
into account the energy production of wind farms and the costs
calculated by using an empirical expression that considers
economies of scale. GAs have been widely used to tackle this
problem. Nevertheless, more recent work has shown good
performance of other meta-heuristic algorithms, such as PSO,
ACO, CMA-ES and SPEA, which additionally enable the optimi-
zation over a continuous domain (instead of the discrete
domain used by the GA). It is also worth noting that various
studies have optimized the problem by using greedy algo-
rithms that allow a quick search for a local optimum. This
strategy can provide acceptable solutions for the case where
wind conditions are not uniform over the whole area covered.

� Development of realistic models of economic behaviour of
wind farms. In this case the problem has been focused on
modelling (and integrating into a global model of the wind
farm) aspects, such as investment costs typically involved in
wind farms, and costs of operation and maintenance. These
include the design of the electrical installation, the network of
access roads, and foundations. Within this trend, it is necessary
to highlight the growing interest in analyzing the influence of
the uncertainty associated with the input data on the design of
the wind farm.

After studying the aforementioned work on this topic, it is
possible to propose potential areas for future research:

� Most papers do not provide in-depth details about the compu-
tational cost required by each of the optimization methods and

how their behaviour evolves as the size of the wind farm
increases. As previously stated, the problem cannot be solved
by classic optimization techniques; therefore most authors
have proposed meta-heuristic methods in order to optimize
this problem. The behaviour of these techniques is affected by
the size of the solution space (in relation to the size of the WF).
Therefore, as the size of the solution space increases, the
parameters of the optimization algorithm should be tailored
according to the complexity of the problem addressed. For
instance, in the case of a GA, the population size and the
convergence criterion should be adjusted to the dimensions of
the problem. Large WFs would require such a great computa-
tional effort that the problem would be rendered virtually
unfeasible under the current state of computer technology.
Therefore, the development of efficient optimization techni-
ques for large wind farms can prove highly useful in future
studies.

� The model for calculating the energy produced by the wind
farm can be the subject of future research, in particular, the
calculation models of the wake effect. Several studies [143–
146] have shown that the behaviour of these models in the case
of complex terrain orography does not fit with sufficient
accuracy to real production values. Therefore, the current trend
in complex terrain focuses on the development of CFD models
to evaluate the wake effect and energy produced. These models
are based on the simulation of fluid behaviour using numerical
methods, which require high computational effort. Therefore,
the introduction of an analysis of the wake effect using CFD
techniques in the WTs micro-sitting problem remains unfea-
sible with the current state of computer technology. Never-
theless, in the coming years, with the future development of
computers, it will be an important factor to be considered.

� Project uncertainty. The economic behaviour of a wind farm is
subject to a high level of uncertainty. Although there are some
studies that have dealt with the uncertainty related to the
behaviour of the wind, it is possible to extend this analysis to
other variables of the problem and apply decision-making
techniques so that the WF design is appropriate to such risk.

� Conflict of interest issues. Wind energy production can be
affected by the presence of other nearby projects, or even
WTs belonging to other owners of the plot of land [13]. This fact
means that wind farm design needs to take into account the
possible decisions of other developers. Decision making using
game theory, combined with the optimization techniques
analysed in this paper, can be a useful tool to achieve a proper
design of the wind farm so that the risks associated with third-
party decisions can be minimized.

� Environmental impact assessment. The consideration of factors
such as environmental impact assessment as a result of the
implementation of the wind farm is also an important factor
which can be included in the optimal design tool for wind
farms. In particular, factors such as noise or visual impact can
be studied during the planning of wind farms. In this way, it
would be possible to assess and mitigate the impact of the
wind project on the environment.

Analysis of reliability of components. The economic perfor-
mance of a wind farm is conditional on the reliability of its
components. The effect of reliability has been taken into account
in several works by introducing a coefficient of the availability of
wind turbines based on typical values obtained in various studies
[147,148]. However, the components of a wind farm can be subject
to very different operating environments, depending on the local
conditions at the placement of the component. In particular, the
presence of nearby wind turbines produces an increase in turbu-
lence in the airflow, and hence turbines located downwind are
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subjected to higher fatigue stresses that affect the reliability of
mechanical components.
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