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Abstract
When planning power system operation it is important to 

have reliable models of the elements of the power system. 
Fixed speed wind turbines are a widely installed generation 
technology that use a single squirrel cage induction generator. 
The local wind profile and the properties of the induction 
machine constitute the main considerations when modeling 
these wind turbines.  Existing methods for estimating the 
parameter values of induction machine models use a wide 
variety of parameter estimation algorithms but primarily use 
active and reactive power measurements made during start-up 
or direct mechanical testing to fit the model to. Proposed here 
is a parameter estimation method that applies improved 
particle swarm optimization to active and reactive power 
measurements made during a deviation in system frequency 
to estimate the parameter values of a induction machine 
model. This method has shown good accuracy and the use of 
on-line data may prove beneficial in future applications.  

1 Introduction 
The single squirrel cage induction generator (SCIG) is a 

simple, but effective, generator design. This simple design 
makes the SCIG a practical and reliable solution in fixed 
speed wind turbine (FSWT) applications. The basic design of 
a FSW is shown in Figure 1. 

Figure 1: The basic configuration of a FSWT. 

To ensure proper operation it is important to have a 
reliable model of the wind farm. This equivalent model is 
usually formed in one of two ways: reduce the wind farm to a 
single equivalent wind turbine [1], [2], [3], [4], [5]; or create 
several equivalent wind turbine models based on the variable 
wind profile of the site and aggregate these into a single 
equivalent wind turbine [5], [6]. These methods were 
compared in [7] and both found to be effective. Regardless of 
how the equivalent model is produced accurate parameter 
values will be necessary. 

Existing solutions to the problem of estimating SCIG 
parameter values have two main characteristics: the parameter 
estimation technique employed and the source of the SCIG 
power output data the model is fitted to.  

The parameter estimation techniques that have been 
employed include: non-linear least squares, Kalman Filters 
[10], genetic algorithms (GA) [11], [12], [13], [14], local 
search algorithms (LSA), simulated annealing (SA), 
differential evolution [15] and various forms of particle 
swarm optimization (PSO) [11], [16], [17], [18].  

The data used is usually the active and reactive power 
output of the SCIG during start-up [12], [15], [16], [17], or 
direct mechanical testing.  

The method proposed in this paper uses improved particle 
swarm optimization (IPSO) and the SCIG response to a 
change in the grid frequency. 

PSO achieves good solution quality by allowing 
constructive interaction between population members based 
on the best solutions found in past iterations [11], [12]. [19]. 
IPSO differs from PSO as it defines the concept of inertia 
weight, introduced in [20], as a function of the iteration count. 
This can be done in a variety of ways [17], [21], [22] and 
affords an improvement in convergence and accuracy [22].  

During a disturbance the power factor correction that is 
necessary when using SCIGs will reduce the voltage 
deviation at the SCIG terminals but leave the frequency 
deviation relatively unaffected. Therefore, fitting the SCIG 
model to the response of the SCIG to a change in grid 
frequency could be a useful source of data for parameter 
estimation in FSWT wind farm applications. 



The intent of this paper is to demonstrate the validity of 
using IPSO to estimate the parameter values of a SCIG model 
based on the response of the SCIG to a change in grid 
frequency. The formulation of the SCIG model and the IPSO 
algorithm are describe in sections 2 and 3, respectively. 
Section 4 contains the results of some of the simulations 
performed to verify the method.  

2 Formulation of Parameter Estimation for an 
SCIG

2.1 Induction generator model 

The induction generator model used in this paper is a 
standard induction machine model, detailed descriptions of 
which can be found in [23], [24], [25]. This is possible 
because an induction generator is fundamentally an induction 
machine with torque applied to the shaft. 

Using an arbitrary reference at angular velocity  the 
electrical dynamics can be modeled using the following 
second order state space model [24]:

qs qs s qs dsv R i

ds ds s ds qsv R i

0 ' ' ' 'qr r qr r drv R i

0 ' ' ' 'dr r dr r qrv R i

(1) 

where the indices d, q, s and r refer to the d-q reference frame 
and the stator and rotor, respectively. The variable r is the 
electrical angular velocity.  
The electrical variables, namely voltage (v), current (i),
resistance (R) and flux linkage ( ), are all referred to the 
stator, as indicated by the prime notation.  

The flux linkages of a SCIG are expressed in terms of 
current and inductance (L), as follows [24]:

'qs ls qs m qs qrL i L i i

'ds ls ds m dr drL i L i i
(2) 

The mechanical dynamics can be described using a fourth 
order model in terms of the rotor angular velocity ( mec) and 
angular position ( mec).

mec mec

1
2mec mec eleP P

H
(3) 

where H is the rotor inertia constant, Pmec is the shaft 
mechanical power,  and  Pelec is the electromechanical torque  
given by: 

ele ds ds qs qsP v i v i (4) 
The reactive power is calculated as follows:  

ele qs ds ds qsQ v i v i (5) 
Equations (1)-(5) are the model of a symmetrical induction 

machine that is used in this paper. The necessary 
transformation of voltage and current from the abc to the dq
reference frame is achieved as follows: 
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The three phases (a, b and c) are connected using an un-
earthed Y configuration, so ics = ias ibs. This configuration 
makes it possible to use only two line-to-line input voltages in 
the model instead of three line-to-neutral voltages.  

In the preceding equations,  is the angular position of the 
arbitrary reference. A rotating reference frame with an 
angular velocity = s, is suitable modelling work where the 
system frequency, fs, is changing ( s= 2 fs). The increased 
complexity involved in using a rotating reference frame with 
variable speed is unavoidable as it is necessary to include the 
frequency behavior of the external system in the model.  

2.2 Formulation of the parameter estimation problem 

In essence, parameter estimation consists of comparing the 
response of the real system with the response of a system 
model and then updating the model parameter vector x, in 
some way, to reduce the difference, or error , between the 
response of the model and that of the real system.  

There are six parameters in the non-linear model that 
cannot be measured directly. Therefore, the parameter vector 
contains six unknown variables that must be estimated: 

[ , , , ' , ' , ]T
s ls r lr mH R L R L Lx (8) 

To obtain initial values for the parameter vector the model 
can be solved for the system state prior to the frequency 
deviation. This reduces the dimension of the problem 
affording an increase in the accuracy of the final solution and 
a reduction in the time taken to converge to this solution.

Parameter estimation can be treated as an optimization 
problem in which an objective function that describes the 
difference between the response of the system and the system 
model is minimized: 
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where Pmea and Qmea are the measured active and reactive 
power from the response of the real system and Psim and Qsim
correspond to the active and reactive power response of the 
system model. n is the number of samples of active and 
reactive power that are used during the estimation process.  

3 Improved Particle Swarm Optimization 
Particle swarm optimisation is an iterative method that was 

first proposed by Kennedy and Eberhart in 1995 [19]. They 
were inspired by the behaviour of animals that travel in large 
groups, in which each member communicates useful 
information to the other members. 

To capture the benefit of this form of social behaviour a 
number of particles are generated to form a swarm. With each 



iteration these particles are moved around the searching 
space, based on information received from the other particles 
regarding the best solutions from past iterations, to find the 
best solution. The procedure for executing the method is 
depicted in a block diagram in Figure 2. 

Figure 2: Flowchart of PSO algorithm. 
In the first iteration each particle is a parameter vector x

with randomly selected values (limited by a certain range 
particular to each parameter). The parameter values 
represented by the particle is the position of that particle 
within the swarm. Each particle represents a set of system 
parameter values. Using this position the response of the 
system model can be calculated. 

 The error in the particle position can be calculated by 
comparing the model response and the measured response 
using an expression like (9). The reciprocal of this error is the
fitness of a particle and indicates the accuracy of the model 
response produced by the position the particle has within the 
searching space. 

The position of each particle is updated each iteration using 
the velocity of the particle. Particle velocity describes the rate 
and direction in which the position, and therefore each of the 
model parameter values, changes with each iteration. The 
velocity of a particle and its next position can be calculated as 
follows:

1
1 1 2 2( ) (k k k k k

i i i i gW c r c rX x X x )k
i (10) 

1 1k k k
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where i
k and i

k+1 are the current and next step velocity of 
the ith particle, respectively, W is the inertia weight, Xi

k is the 
best previous position of the ith particle, Xg

k is the best
position for any iteration or particle, xi

k is the actual ith
particle position, c1 and c2 are the acceleration coefficients 
usually equal to 2.0 and r1 and r2 are random numbers ranging 
from 0.0 to 1.0. Here, the term best position refers to the 
position with the highest fitness. 

The position and velocity of each particle is updated each 
iteration until the fitness of Xg

k reaches a pre-defined 
threshold or the achieved maximum number of iterations is 
reached.

IPSO uses a variable inertia weight term, in this 
application this term is modulated as a function of the 
iteration count using the expression proposed in [17]:

max

max

( )
( )

( ) initial final final
iter iter

W W W
iter

W (12) 

where Winitial is the initial inertia weight, Wfinal is the final 
inertia weight, itermax is the maximum number of iterations, 
iter is the number of the current iteration and  is the 
nonlinear modulation index. This definition of inertia weight 
causes it to decrease with each iteration reducing the 
contribution of the past velocity when calculating the future 
velocity. This means that as the iteration count increases the 
velocities will tend to be smaller, allowing more precise 
corrections of particle positions and hence improved accuracy 
and convergence. 

3.1 Initialization and tuning of IPSO 

The IPSO algorithm used here is initialized by randomly 
assigning a set of parameter values, bound within a given 
feasible range for each parameter, for each of the thirty 
particles that make up the swarm. Each element of each 
particle is selected according to the following formula: 

min max min( )i i i ix x rand x x          (13) 

where xi is the ith element of the parameter vector, rand is a 
uniformly distributed random number between 0.0 and 1.0, 
ximin and ximax are the minimum and maximum possible value 
of the ith element of the parameter vector, respectively. The 
minimum and maximum values should be carefully selected 
for each parameter to ensure that any likely true value lies 
within the specified range. 

To ensure the selection of suitable values for use in (12) a 
number of empirical studies were carried out. For each 
candidate configuration 100 trials have been performed and 
the mean fitness of the final solution calculated. The best 
settings were found by comparing the mean fitness for each 
configuration. This approach led to the selection of the 
following values: Winitial = 0.90, Wfinal = 0.01 and = 1.20. 

4 Simulation and Results 
Simulations were performed to demonstrate the validity of 

using the model and IPSO algorithm described in sections 2 
and 3 for estimating the parameter values of a SCIG based on 
its response to a deviation in system frequency  

The IPSO algorithm used a swarm size of thirty particles, 
the maximum number of iterations was fifty and it was 
implemented in MATLAB®.

The simulated test system that was used to generate the 
response of the ‘real’ system consisted of an AC 
programmable voltage source connected to a SCIG through a 
single busbar. This system layout was used as it is a rough 
representation of the connection of a FSWT wind farm to a 
large power system. 

Two case studies were examined. In the first case, a step 
change in frequency was simulated. In the second case, a time 
series representing the frequency response of a synchronous 



generator during a load step change was simulated. The time 
series of frequency was obtained from a simulation performed 
with DIgSILENT® PowerFactory™ [26]. In both of these test 
cases the voltage output of the source was unchanged. 

4.1  Case I: -2Hz Frequency Step Change 

In Case I a step change of -2Hz was applied to the 
frequency of the programmable voltage source output to 
represent a disturbance. This very large change in frequency 
was simulated to verify that the parameter estimation method 
is viable when large disturbance occur.  

The parameter values found using the IPSO algorithm are 
shown in Table I. Figure 3 contains a comparison of the 
simulated ‘real’ system and that model output.  These results 
show that the parameter estimation method is capable of 
accuracy that should satisfy the needs of stability analysis. 
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Figure 3: Results with IPSO: Case I.  

Real Estimated
Pe Error [%] 2.0950 
Qe Error [%] 8.4823 
H [s] 1.1877 1.1999 
Rr [p.u] 0.0010 0.0013 
Llr [p.u] 0.0100 0.0116 
R’r [p.u] 0.0010 0.0010 
L’ls [p.u] 0.0100 0.0081 
Lm [p.u] 3.0000 3.1193 

Table 1: Summary of Results for Case I. 

4.2  Case II: System frequency response 

In Case II the frequency disturbance used is the response 
of a synchronous generator to a load step change, Figure 4. 
This frequency disturbance was selected as it is a better 
representation of the actual frequency deviation that occurs in 
a power system.  
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Figure 4: Frequency response of synchronous generator 
during a load step change. 

Application of the parameter estimation method to the 
response of the SCIG to this frequency disturbance produced 
the results presented in Table 2. 

Real Estimated
Pe Error [%] 2.5505 
Qe Error [%] 16.4683 
H [s] 1.1877 1.2058 
Rr [p.u] 0.0010 0.0009 
Llr [p.u] 0.0100 0.0078 
R’r [p.u] 0.0010 0.0010 
L’ls [p.u] 0.0100 0.0119 
Lm [p.u] 3.0000 2.5819 

Table 2: Summary of Results for Case II. 

The IPSO produced estimates of the machine parameters 
with accuracy comparable to that of Case I for this more 
complex and realistic frequency disturbance.  

4 Conclusions 
When operating a power system, it is important to have 

accurate models of all of the significant components. This 
paper proposed a method for estimating the parameter values 
of a single squirrel cage induction generator model, typical of 
those used in fixed speed wind turbine applications, using the 
response of the machine to a deviation in frequency and the 
improved particle swarm algorithm.  

This method for estimating the parameter values of the 
squirrel cage induction generator model produces good results 
for both a large step change in frequency and the frequency 
response of a synchronous generator. 

The method uses the response of the machine to a 
frequency disturbance, instead of the start-up or mechanical 
test data usually used in other induction machine parameter 
estimation methods. This difference could well be beneficial 
as most wind turbines will be installed in relatively remote 
locations so direct testing once the generator is in operation 
could be awkward. Furthermore, the growing trend toward the 
installation of wide area monitoring equipment will mean that 
the data showing the response of a wind turbine to a 
disturbance will become increasingly available. 
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