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Abstract— This paper presents an application of the Mean-
Variance Mapping Optimization (MVMO) algorithm to the 
identification of the parameters of Gaussian Mixture Model 
(GMM) representing variability of power system loads. The 
advantage of this approach is that different types of load 
distributions can be fairly represented as a convex combination 
of several normal distributions with respective means and 
standard deviation. The problem of obtaining various mixture 
components (weight, mean, and standard deviation) is 
formulated as a problem of identification and MVMO is used to 
provide an efficient solution in this paper. The performance of 
the proposed approach is demonstrated using two tests. Results 
indicate the MVMO approach is efficient to represented load 
models. 

Gaussian mixture Model; Load Modeling; Mean Variance 
Mapping Optimization Algorithm; Optimization 

I.  INTRODUCTION 
The modeling of power system loads is a complex task due 

to the stochastic nature of the demand, and it is becoming more 
and more challenging in future networks where the penetration 
levels of distributed generation system are expected to be 
extraordinary high. Accurate model models of power system 
loads are essential for planning studies and operation. There are 
several techniques to model the loads. However, the most 
common is model the loads through Gaussian distribution. 
Studies have demonstrated the single Gaussian assumption is 
not always justified for all the loads since the statistical 
distribution of electric load variations may not strictly follow 
any common probability distribution function [1].  

A significant research effort has been devoted to load 
variation probabilistic modeling using different probabilistic 
distributions functions (PDFs): Normal [2], Log-Normal [3], 
Gamma [2], Gumbel, Inverse-normal [2], Beta [4], [5], 
Exponential [6], Rayleigh, and Weibull [7]. An important 
conclusion that can be derivate from a literature survey is that 

there is not a unique or generalized technique to model the load 
PDF [8]. 

So far the use of Gaussian model of a load profile has been 
widely used for various reasons: (i) simplicity as it can be 
described using two parameters: mean (µ) and standard 
deviation (σ), (ii) the analysis of this PDF is the most 
developed and documented in the literature. In recent times, 
publications in several areas such as: finance, biometric, 
biology and most recently electrical engineering have used the 
concept of a parametric probability density function 
represented as a weighted sum of Gaussian component 
densities, Gaussian Mixture Model (GMM) [9]. 

R. Singh et al [8] introduced the statistical modeling of the 
loads in distribution networks through GGM and the 
expectation maximization (EM) algorithm was used to obtain 
the parameters of the mixture components. Despite of its 
conceptual simplicity, the EM algorithm may have difficulties 
in handling problems whit high dimensionality. 

The advantage of GMM approach is that different types of 
load distributions can be fairly represented as a convex 
combination of several normal distributions with respective 
means and standard deviation. The problem of obtaining 
various mixture components (weight, mean, and variance) can 
be formulated as a problem of identification where 
optimization methods provide an efficient solution. Hence, 
based on the success gained in previous applications to 
different power system optimization problems, this paper 
presents an application of the Mean-Variance Mapping 
Optimization (MVMO) algorithm to the identification of the 
parameters of GMMs representing variability of power system 
loads. MVMO shares certain similarities to other heuristic 
approaches, but possesses a special mapping function through 
which a new offspring generated in every update is always 
inside the respective bound, since it is always inside the range 
[0,1]. The shape and location of the mapping curve are adjusted 
according to the progress of the search process, and MVMO 



updates the candidate solution around the best solution in every 
iteration step. Thanks to the well-designed balance between 
search diversification and intensification, MVMO can find the 
optimum quickly with minimum risk of premature convergence 
[10], [11]. 

The remaining sections of the extended abstract are 
organized as follows: Section II presents the GMM model. 
Section III describes problem formulation and the adaptation of 
MVMO to tackle the identification task. Finally, Section IV 
presents results using load samples from the Venezuelan grid. 

II. GAUSSIAN MIXTURE MODEL 
A Gaussian Mixture Model (GMM) is a parametric PDF 

represented as a weighted sum of Gaussian probabilistic 
densities. The GMM is a weighted sum of NC component 
Gaussian densities as given by the equation: 
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where x is a D-dimensional continuous-valued data vector (i.e. 
measurement or features), wi, i = 1, ..., NC, are the mixture 
weights, and g(x|µi,Σi), i = 1, ..., NC, are the component 
Gaussian densities. Each component density is a D-variate 
Gaussian function of the form: 
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with mean vector µi and covariance matrix Σi. The mixture 
weights satisfy the constraint that sum of all the weights must 
equal to one. 
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This condition is because a PDF must be nonnegative and the 
integral of a PDF over the sample space of the random 
quantity it represents must evaluate to unity.  

III. PROPOSED MVMO-BASED IDENTIFICATION OF GMM 

A. Problem statement 
The GMM parameter estimation approach presented in this 

paper, based on the chi-square goodness-of-fit test, is defined 
as follows: 

Minimize 
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where χ2 stands for Pearson's cumulative test statistic, which 
asymptotically approaches a χ2 distribution. Oi and Ei denote 
observed frequency and the expected frequency (asserted by 
the null hypothesis), respectively; h is a binary variable that 
indicates whether the null hypothesis can (h=1) or cannot 
(h=0) be rejected at the 5% significance level. 

B. Solution through MVMO 
The theoretical background of MVMO has been published 

in [10]-[12]. MVMO operates on a single solution rather than 
a set of solutions like in many evolutionary algorithms. The 
goal is to perform the optimization with a minimum amount of 
objective function evaluations (e.g. solving differential 
equations). The procedure of MVMO for solving the GMM 
identification problem with D parameters to be identified is 
summarized in Fig. 1. 
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Figure 1.  General flowchart for the MVMO algorithm. MVMO 
implementation procedure for identification of GMM parameters. 

The procedure starts with initialization of the parameters of 
the algorithm and the definition of the normalized initial guess 
of the control variable, since the internal searching space of all 
variables in MVMO is restricted in [0, 1]. Hence, the real 
min/max boundaries of variables have to be normalized to 0 
and 1.  Next, the solution archive, which constitutes the 
knowledge base for search, is filled/ updated at the first/ 
successive function evaluations. Mean variance and shape 
factors are also computed for every optimization variable at 
this stage. Finally, creation of an offspring is performed, 
which involves selection of m of k dimensions of the 
optimization problem and mutation operation on the selected 
variables through a special mapping function. During the 
iteration it is not possible that any component of the solution 
vector will violate the corresponding boundaries. This goal is 
achieved by using the mapping function. The inputs of this 
function are mean and variance of the best solutions that 
MVMO has discovered so far. The elegant property of 
MVMO is the ability to search around the local best-so-far 
solution with a small chance of being trapped into one of the 
local optimums. This feature is contributed to the strategy for 
handling the zero-variance. 

Fitness evaluation and constraint handling: For each 
individual, the chi-square goodness-of-fit test is performed, 
the feasibility of the solution is checked and a fitness value   is 



assigned. It is considered that an individual is better if the 
fitness is smaller. The static penalty scheme is used in this 
paper to handle constraints. Since the control variables in x are 
self-restricted, all dependent variables are constrained by 
applying the integrated fitness function as follows: 
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The where f is the original objective function, n is the 
number of constraints, β  is the order of the penalty term (e.g. 
1 or 2), υi is the penalty coefficient of the i-th constraint and g 
stands for inequality constraint. It is worth mentioning that 
other constraint handling techniques are also applicable to 
MVMO.  

Termination criteria: In this paper, the MVMO search 
process is terminated based on completion of a pre-specified 
number of fitness evaluations. 

Solution archive: The solution archive constitutes the 
knowledge base of the algorithm for guiding the searching 
direction. Hence, the best n individuals that MVMO has found 
so far are saved in the SA. Additionally, two relevant 
information parameters, namely fitness and feasibility of each 
individual are also stored. The following rules are set up to 
compare the individual generated at each iteration and existing 
archived solutions in order to avoid losing good solutions [11]: 
(i) Any feasible solution is preferred to any infeasible solution, 
(ii) between two feasible solutions, the one having better 
objective value is preferred, (iii) between two infeasible 
solutions, the one having smaller fitness value (i.e. smaller 
constraint violation) is preferred. 

An update takes place only if the new individual is better 
than those in the archive. The archive size is fixed for the 
entire process. The archived individuals are dynamically 
sorted so that the first ranked individual is always the best. 
Feasible solutions are placed in the upper part of the archive. 
Among these solutions, they are sorted based on their original 
objective values. Infeasible solutions are sorted according to 
their fitness values and then placed on the lower part of the 
archive. Once the archive is filled up by n feasible solutions, 
any infeasible candidate solution does not have chance to be 
saved in the archive. 

Parent assignment: The first ranked (best-so-far) solution 
denoted as xbest is assigned as the parent. 

Variable selection: The MVMO searches around the mean 
saved in the archive for the better solution only in m selected 
directions. This means that only these dimensions of the 
offspring will be updated while the remaining D-m dimensions 
take the corresponding values from xbest. In this paper, a 
random sequential selection strategy was implemented. 

Mutation: For each of the m-selected dimension, mutation 
is used to assign a new value of that variable. Given a uniform 
random number x'i ∈[0,1] the new value of the i-th component 
xi is determined by: 

( )i x 1 0 i 01x h h h x h′= + − + −  (7) 

where hx, h1 and h0 are the outputs of the transformation 
mapping function based on different inputs given by:  

( ) ( ) ( )x i i 0 i 1 i, 0 , 1h h u x h h u h h u′= = = = = =  (8) 
The mapping function is parameterized as follows: 
( ) ( ) ( ) ( )i i2i i1 1
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where si1 and si2 are shape factors allowing asymmetrical 
slopes of the mapping function. The slope is calculated by: 

( )i i slns v f= −  (10) 
where fs is a scaling factor, which enables the control of the 
search process during iteration. Interested readers are referred 
to [2] for further details on how to set the two different shape 
factors and the scaling factor as well. 

IV. SIMULATIONS AND RESULTS 
In this section, the some tests are performed to the MVMO 

algorithm in order to evaluate the capability to identify the 
parameters for the GGM. A specific MATLAB®[13] program 
is developed by the authors for such propose. All simulations 
are performed using a personal computer based on Intel®, 
CoreTM i7 CPU 2.0GHz, 8 GB RAM with Windows® 7 Home 
Edition 64-bit operating system. 

Two different tests are used in this section: synthetic data 
and real data. A first test is based on a set of synthetically 
created data; the MVMO algorithm is used to identify the 
parameter: weights, means, and standard deviation. The data is 
created based on a pre-defined full component GMM. A 
simple comparison of the parameters obtained from the 
proposed approach and the original values supposed during 
the synthetic data creation is used to define the goodness-fit. 
The second test is performed using real data, the aims is 
demonstrate the suitability of the proposed method to model 
complex load models. 

A. Synthetic data 
A probabilistic distribution function for a hypothetical load 

that consists of a mixture of three components (NC = 3) is used 
for test in this section. Table I shows the parameters of GMM 
components and Fig. 2 shows the original PDF, GGM PDF 
and the individual components.  

TABLE I.  PARAMETERS OF THE GMM COMPONENTS: SYNTHETIC DATA 

Gaussian PDF No. Weight wi (p.u.) Mean µi (kW) Std σi (kW) 
1 0.3500 705.3900 119.6919 
2 0.1200 1163.2800 155.5662 
3 0.0530 465.2800 80.1255 

 
The performance of the MVMO algorithm is evaluated 

comparing the parameters identified for the GMM using this 
approach versus the known parameters shown on Table I, 
absolute error is used as effective measurement for the 
performance. Table II shows the errors for the weights (wi) is 
the slowest comparing with the results on other parameters. 
The discrepancies obtained using MVMO are almost 
negligible for the mean (µi) and standards deviation (σi) 



results. 
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Figure 2.  Probabilistic distribution density for a hypothetical load: Data 

created synthetically. 

TABLE II.  PERFORMANCE OF  MVMO ALGORITHM FOR THE 
IDENTIFICATION OF GMM 

Gaussian PDF No. Error 
Weight wi (p.u.) 

Error 
Mean µi (kW) 

Error 
Std σi (kW) 

1 0.876×10-9 1.350×10-2 0.135×10-3 
2 0.658×10-9 0.118×10-3 0.227×10-3 
3 0.797×10-9 0.750×10-2 0.333×10-4 

 

B. Real data: Venezuelan test case 
Venezuela's power system is an integrated vertical power 

company, called Corporación Electrica Nacional (Corpoelec), 
which covers most of the country. The Paraguaná Peninsula 
transmission system is fed from a single circuit (230 kV) 
transmission line of San Isidro substation as part of the 
Venezuelan power pool. The average demand is 280 MW and 
importation by San Isidro tie line is 200 MW. Fig. 3 shows all 
substations, transmissions lines, static reactive compensators, 
and generators of the Paraguana's power system. 
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Figure 3.  Representative single-line diagram of the Paraguaná transmission 

system. 

Punto Fijo and Judibana substation are very important loads 
of the Paraguaná power system, for this reason these 
substations are selected for testing the proposed approach. 
Real data measurements for two years (hourly basis) of those 
substations are used. 

The load behavior on those substations is chaotic and 
difficult to be stochastically modeled. Several attempts to 
create a model using different PDFs reveal such models are 

not statistically representative for the load behavior. An 
attempt using cumulative distribution functions (CDF) provide 
better results (see Fig. 4 and Fig. 5), however, Kolmogorov-
Smirnov (KS) test has been performed for all distribution and 
results indicate that no single PDF would entail a good fit 
goodness to explain the variation of the measured load active 
power at those substations. It is evident these time-series of 
active power result a good test for the proposed approach. 

C. GMM results and conclusions 
Figure 6 illustrates the average convergence behavior (after 

100 repetitions of the optimization) of the objective function 
and the number of mixture components needed to define the 
best GMM fit describing the variability of the loads at Punto 
Fijo Substation. Note that MVMO is very fast in the global 
search capability because the lowest χ2 has been found after 
750 objective function evaluations. 
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Figure 4.  ECDF of the load at Punto Fijo Substation and CDFs of various 

probability distributions with the same average value and standard deviation.  
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Figure 5.  ECDF of the load at Judibana substation and CDFs of various 

probability distributions with the same average value and standard deviation. 

Fig. 7 and Fig. 8 show that the full component merging of 
the weighted mixture components determined through MVMO 
optimization provide good approximation of the statistical data 
collected at two substations of the Paraguaná Transmission 
System. The GMM fit obtained through the expectation 
maximization (EM) algorithm is also included in the figure in 
order to validate the results obtained via MVMO. This 
estimation can be easily performed in Matlab using the 
gmdistribution.fit command. Note the closeness between the 
models identified using both MVMO and EM, which indeed 
highlight the accuracy that can be achieved with the proposed 

Original PDF 
Individual component PDF
GMM PDF 



approach. Furthermore, it is worth to mention that the chi-
square goodness-of-fit for the MVMO and EM cases was 
11.35 and 22.12, respectively for the for the Judibana estimate. 
Despite of the small difference, it can be concluded that the 
MVMO estimate provides better estimation accuracy. The 
parameters of each GMM component (obtained with the 
proposed approach) are summarized in Table III and Table IV. 
These results suggest that any load PDF, irrespective of its 
distribution, can be estimated with a high degree of confidence 
using the proposed approach. 

 
Figure 6.  Convergence behavior of the MVMO-based identification of 

GMM. 

 
Figure 7.  GMM approximation of the load PDF at Punto Fijo substation. 

V. CONCLUSIONS 
An application of the Mean-Variance Mapping 

Optimization (MVMO) algorithm to the identification of the 
parameters of Gaussian Mixture Model (GMM) representing 
variability of power system loads is presented in this paper. 
This approach provides several advantages; one of them is that 
different types of load distributions can be fairly represented 
as a convex combination of several normal distributions with 
respective means and standard deviation.  

In this paper, the problem of obtaining various mixture 
components (weight, mean, and standard deviation) is 
formulated as a problem of identification. The novel 
optimization method, Mean-Variance Mapping Optimization 
(MVMO) is used to provide an efficient solution. The 

performance of the proposed approach is demonstrated using 
two tests. A first test is based on a set of synthetically created 
data; the MVMO algorithm is used to identify the parameter 
weights, means, and standard deviation. Results of these tests 
indicate, and the second test is performed using real data, the 
aim is demonstrate the suitability of the proposed method to 
model complex load models. Results indicate the MVMO 
approach is efficient to represented load models. 

 
Figure 8.  GMM approximation of the load PDF at Judibana substation. 

TABLE III.  RESULTS OF GMM APPROXIMATION OF THE LOAD PDF AT 
PUNTO FIJO SUBSTATION. 

Gaussian PDF No. Weight (p.u.) Mean (MW) Std (MW) 
1 0.1790 32.4068 9.2641 
2 0.1956 27.6210 2.0460 
3 0.4649 34.4864 6.8014 
4 0.1605 24.1748 4.5416 

TABLE IV.  RESULTS OF GMM APPROXIMATION OF THE LOAD PDF AT 
JUDIBANA SUBSTATION. 

Gaussian PDF No. Weight (p.u.) Mean (MW) Std (MW) 
1 0.1665 29.0589 4.8444 
2 0.1936 20.6211 10.7520 
3 0.1939 26.1117 4.5117 
4 0.1922 26.8740 6.3281 
5 0.2539 31.1581 3.1041 
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