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Abstract—Controlled islanding is an active and effective way of
avoiding catastrophic wide area blackouts. It is usually considered
as a constrained combinatorial optimization problem. However,
the combinatorial explosion of the solution space that occurs for
large power systems increases the complexity of solving it. This
paper proposes a two-step controlled islanding algorithm that
uses spectral clustering to find a suitable islanding solution for
preventing the initiation of wide area blackouts by un-damped
electromechanical oscillations. The objective function used in
this controlled islanding algorithm is the minimal power-flow
disruption. The sole constraint applied to this solution is related
to generator coherency. In the first step of the algorithm, the
generator nodes are grouped using normalized spectral clustering,
based on their dynamic models, to produce groups of coherent
generators. In the second step of the algorithm, the islanding
solution that provides the minimum power-flow disruption while
satisfying the constraint of coherent generator groups is deter-
mined by grouping all nodes using constrained spectral clustering.
Simulation results, obtained using the IEEE 9-, 39-, and 118-bus
test systems, show that the proposed algorithm is computationally
efficient when solving the controlled islanding problem, particu-
larly in the case of a large power system.

Index Terms—Constrained spectral clustering, controlled is-
landing, graph theory, normalized spectral clustering.

I. INTRODUCTION

ONTROLLED islanding of a power system is an effi-

cient corrective measure for limiting system blackouts
after a large disturbance has occurred. It limits the occurrence
and consequences of blackouts by splitting the power system
into a group of smaller, islanded power systems, or islands. The
essence of an islanding solution is determining a suitable set of
transmission lines that need to be disconnected to create a set of
electrically isolated islands. Controlled islanding can be used to
cope with different power system extremes, such as un-damped
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oscillations, voltage collapse, cascading trips, etc. This paper
proposes an algorithm for determining suitable islanding solu-
tions for the scenario of un-damped electromechanical oscilla-
tions that are not accompanied by voltage instability.

To create stable islands, the islanding solution must satisfy
a large number of constraints, such as load-generation balance,
generator coherency, availability of transmission lines, thermal
limits, voltage stability, transient stability, etc. It would be too
complicated to search for a solution satisfying all of these con-
straints or even confirm if such a solution exists. Considering
only a sub-set of these constraints, such as load-generation bal-
ance and generator coherency, allows a set of feasible candi-
date islanding solutions to be produced. This set of candidates
can be coordinated with other corrective measures to find a final
islanding solution that satisfies all constraints [1]-[6]. This ap-
proximation reduces the complexity of the controlled islanding
problem; this is particularly useful when dealing with large net-
works [1]-[4].

Existing methods in the literature for determining islanding
solutions can be classified according to the objective function
used. The two main types of objective function are minimal
power imbalance and minimal power-flow disruption.

Methodologies for minimal power imbalance minimize
the power imbalance within the islands formed to reduce the
amount of load that must be shed after system splitting [1]-[4],
[7]-11]. Methodologies for finding islanding solutions with
the minimal power-flow disruption minimize the change of the
power flow pattern within the system following system splitting
[12]-[14].

The difference between power imbalance and power-flow
disruption is that the power imbalance can be expressed by
the algebraic sum of active power (considering the direction
of power flow) on each disconnected transmission line, while
the power-flow disruption can be expressed by the arithmetical
sum of active power on each disconnected transmission line.

In [1], a two-phase Ordered Binary Decision Diagram
(OBDD) method based on a simplified graph is presented to
find islands with low power imbalance that contain coherent
generators. In [2], the Breadth First Search (BFS) and Depth
First Search (DFS) algorithms are used to find the islanding
solution that separates coherent generator groups, with minimal
power imbalance. Other algorithms that can be used to find
islands with the minimal power flow imbalance include Angle
Modulated Particle Swarm Optimization [4], and the Krylov
Subspace method [7].

Finding a solution with minimal power imbalance is an
NP-hard problem and has been shown to be a special case of
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the 0—1 knapsack problem [1]. There is no known algorithm that
can efficiently solve problems of this type within polynomial
time [1], [9].

Most existing algorithms overcome this challenge by using
heuristic search methods, or by only solving the problem for
a simplified network model, or a select subset of the original
power system [1]-[9]. For example, when using an OBDD
based method in online applications, the network model should
be simplified to contain less than approximately 40 nodes [3],
[11].

Simplifying the network model reduces the solution space.
It is possible that some of the solutions that are lost during the
simplification will be better than the final solution found by the
algorithm [11]. Heuristic search methods are usually quite flex-
ible and have satisfactory computational efficiency. However,
the solution quality cannot be guaranteed since these methods
tend to converge to local, rather than global, minima.

Spectral partitioning and multi-level kernel k-means methods
are proposed in [12] and [13] to find the islanding solution with
the minimal power-flow disruption. Both methods have excel-
lent computational efficiency, but do not consider generator co-
herency [15]. This neglect of generator behavior means that the
stability of the islands produced cannot be guaranteed. In addi-
tion, direct application of spectral clustering without constraints
often leads to a single node being separated from the rest of the
graph [16]. The flaws in these two solution types are clearly un-
acceptable when attempting the controlled islanding of a power
system.

In this paper, a novel two-step Spectral Clustering Controlled
Islanding algorithm (the SCCI algorithm) will be presented. In
the first step of the SCCI algorithm, the generator nodes are
grouped using normalized spectral clustering. The results of this
grouping serve as pair-wise constraints in the next step of the
SCCI algorithm, in which every node is grouped based on con-
strained spectral clustering. This constrained spectral clustering
uses power flow data to producing an islanding solution with
minimal power-flow disruption. Therefore, the two-step SCCI
algorithm proposed here can identify, in real time, an islanding
solution that has minimal power-flow disruption and satisfies
the constraint of generator coherency.

The main body of the paper is organized as follows. Section I1
introduces the controlled islanding problem and basic concepts
of spectral clustering. In Section III, the execution of the pro-
posed SCCI algorithm is discussed. In Section IV, the new al-
gorithm is applied to the IEEE 9-bus, 39-bus, and 118-bus test
systems to demonstrate its performance. Section V concludes
the paper.

II. CONTROLLED ISLANDING AND SPECTRAL CLUSTERING

In this section, some basics concepts of graph theory are
introduced. The controlled islanding problem is then defined
as a constrained optimization problem that is converted into a
graph-cut problem. A possible method for solving this type of
problem, spectral clustering, is introduced.

A. Graph Theory Preliminaries

In graph  theory, an  undirected graph-model
G(V.Vg.E,W) can be used to describe an m-gen-
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erator and n-bus power system. In the above graph-model, the
node set V.= {w1,...,v,} and the edge set E, with elements
ei;(i,7 = 1,...,n), denote the buses and transmission lines,
respectively. Vg is a subset of the node set V that contains
only those buses with generators directly connected to them.
The matrix W is a set of edge weights.

For convenience, only the bisection case is presented in this
paper. Bisection of a graph G splits it into two sub-graphs
G1 (Vl, VGI; El, Wl) and GQ (VQ, VGQ, EQ, Wz) by re-
moving the edges connecting these two sub-graphs, with each
sub-graph representing a sub-system of the original power
system. Here, V1 and V2 are disjoint subsets of V, i.e.,
ViNVa =Y and V1 U V3 = V. In the same way, Vg1 and
V @2 are defined as two disjoint subsets of V¢, while they are
also subsets of V1 and Vg, respectively.

The set of edges removed to separate these sub-graphs is
called the cutset. The sum of the weights of the edges within
this cutset is called the cut, which is defined as [17]

Z Wi (1)

1€V1,j€Va

cut (V1,Va) =

The graph-cut problem is then defined as finding the cutset
that bisects the graph with minimum cut [16]. It is common that
the islanding solution, for a large power system, will require the
system to be split into more than two islands; this is achieved
using recursive bisection [16].

B. Controlled Islanding

The set of sub-graphs formed using the recursive bisection
approach represent the islands that must be created to achieve
controlled islanding. To ensure that stable islands are produced,
the islands formed should have minimal power-flow disruption
and satisfy the constraint of generator coherency, as discussed
below.

1) Generator Coherency: A large disturbance in a power
system can initiate un-damped electromechanical oscillations;
these oscillations can cause generators to lose their coherency.
To create stable islands, the generators within any island formed
must be approximately synchronous.

Based on the classical linearized generator swing equation,
with damping neglected, the linearized second-order dynamic
model of an m-generator power system can be expressed in the
following matrix form [18]:

X = Ax @)

where x = [Ady,..., Aém]T and A¢ is the generator angle
deviation from a steady state operating point &y and A is the
system state matrix. According to the theory of slow coherency,
separating the generators into two groups is equivalent to an
arbitrary division of matrix A into two sub-matrices Ay; and
A 55 that represent the sub-systems G and G (see Fig. 1) [19].

The sum of the Frobenius norms of the off-diagonal sub-ma-
trices A2 and A g3 can be used to define the dynamic coupling
S between subsystems G, and G [19]:

S = [|Arz2| + [[Aza]. 3)
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Fig. 1. Division of the system matrix A into two sub-matrices A1, and Aos.

In this paper, the focus is solely upon the scenario of
un-damped electromechanical oscillations that are not accom-
panied by voltage instability. In this scenario, if it is assumed
that the reactive power balance can be controlled via local
compensation, the effects of the reactive power and bus voltage
magnitude can be neglected as they have a negligible impact
on the dynamic coupling. Therefore, (3) can be rewritten as

follows:
or; (1 1
5= Z Z (851:3- <E+F]))
JEV@2i€Va1

where OP;;/86;; are the synchronizing coefficients and H; is
the inertia constant of the :th generator.

When exposed to electromechanical oscillations generators
with strong dynamic coupling will swing together, whereas gen-
erators with weak dynamic coupling will swing against one an-
other [18]. Therefore, the problem of finding coherent generator
groups is equivalent to an optimization problem of finding the
weakest dynamic coupling between different generator groups,
as shown in (5):

“

min S

= min
Vgi1.Veg2CVa

oy (2 (L L
, . 06;; \H; H,
jEVG2i€Vag1 -

(6))

2) Objective Function: Minimal power imbalance and min-
imal power-flow disruption, defined according to (6) and (7), re-
spectively, can both be used as objective functions of controlled
islanding. Each objective will produce a different solution with
different advantages and disadvantages [3], [20]:

min E Py (6)
V1. VoCV ) - ’
1EV1,jEV 2
min E P 7
Vi, V2OV | : ‘ I | ( )
i€V1,jEV2

where P;; denotes the value of the active power on the trans-
mission line between node 7 and j.

The use of minimal power imbalance as the objective func-
tion creates islands with a similar level of load and generation,
i.e., a good load-generation balance. This property of the objec-
tive function minimizes the amount of load that must be shed
following system splitting.

The use of minimal power-flow disruption as the objective
function creates islands with the minimum change from the pre-
disturbance power-flow pattern. This property of the objective
function improves the transient stability of the islands, reduces
the possibility of overloading the transmission lines within the
island, and eases the islands eventual reintegration with the rest
of the system [20].

When attempting to ensure stability after system splitting the
transient stability, rather than load-generation balance, should
be the primary concern because an island with a negative sta-
bility margin and good load-generation balance will collapse.
However, an island with a positive stability margin and a poor
load-generation balance can be stabilized through load shed-
ding.

Based on the properties of these objective functions the min-
imal power flow disruption is used in this paper, it also has the
additional benefit of reducing the complexity of the problem
faced, the details of this reduction in complexity are described
in Section IV-B.

Considering the complexity of large interconnected power
systems, it might be that the consideration of active power flows
only would not lead to the optimal splitting solution. The in-
clusion of some heuristic knowledge inherent for every single
system, or additional assessment of reactive power flows and
voltage stability related challenges would probably lead to a
more efficient final splitting solution. However, the complexity
of such an approach might be too high and even not practical
enough. This should be addressed in future research projects.

3) Controlled Islanding Problem: The controlled islanding
problem that is solved in this paper consists of a minimal
power-flow disruption objective function (7) and a generator
coherency constraint (5). In [21] some basic results in solving
such an optimization problem are given.

These two optimization problems are combined to form the
SCCI algorithm (8). This is done by first solving (5), to find a
set of coherent generator groups, and then solving (7) subject to
these generator groups:

[Vé1, Vel =
, OP;; (1 1 ))
argmin B s i
Vo1 Va:CVa 2. 2 (86,:3- H;  Hj

JEVG2i€Vaa

>

1€V1,jEV2
subject to Vig; C V1V, C Va.

min

| P
V1,VoCV

®

Here, argmin stands for the argument of the minimum, i.e.,
[V&q, VL] is the node grouping that minimizes the objective
function of (5) [22].

C. Spectral Clustering

Defining the edge weight of the graph using the synchro-
nizing coefficient or the absolute active power on the transmis-
sion line allows the problem of finding the weakest dynamic
coupling and the minimum power flow disruption, respectively,
to be converted into graph-cut problems.

Spectral clustering is the tool used in this paper to solve these
graph-cut problems. In this subsection, two types of spectral
clustering will be introduced, namely un-normalized and nor-
malized spectral clustering.

1) Un-Normalized Spectral Clustering: The theory behind
un-normalized spectral clustering can be briefly described as
follows.
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Un-Normalized Spectral Clustering clusters the nodes into
two subsets based on the Laplacian Matrix L, which is defined
for a graph G as [16]

L=D-W ©)
where D is a diagonal degree matrix that contains diagonal el-
ements D;; that are equal to the total weight of the edges con-
nected to node ¢. Defined in this way, the edge weight matrix W
and the Laplacian Matrix L are both symmetric for any undi-
rected graph.

The un-normalized spectral clustering algorithm, for the case
of bisection, can be executed using the following steps [16]:

1) Compute the first two eigenvectors 1, 92 of the Laplacian

matrix L.

2) Let J € R™*2 be the matrix containing the vectors 91 , >
as columns. Let 3; € R? be the vector corresponding to
the 7th row of J.

3) Cluster the nodes y; € R? into clusters ¢1, o using a
clustering algorithm, e.g., the k-medoids algorithm [23].

Unfortunately, the solution for bisecting the graph using
un-normalized spectral clustering often consists of simply
separating one node from the rest of the graph. This form of
solution is clearly unacceptable for an islanding solution.

2) Normalized Spectral Clustering: Normalized spectral
clustering uses the sum of the node weights within each
sub-graph as a balancing condition, to prevent the application
of spectral clustering from simply separating a single node.
This gives rise to the concept of a normalized cut (Ncut) [17],
which is, defined as

cut (Vq,Va)
weig(Vy)

cut (Vq,Va)

Ncut (V1,Va) = weig(Va)

(10)

where weig(V1) = >,y Di and is thus the total sum of the
weights of the nodes in Gy. The weig(V3a) is similarly defined
for Gg. The inclusion of the node weights as a balancing con-
dition acts to discourage the creation of a sub-graph with very
low weight. The normalized spectral clustering method can be
used to split the graph with minimum Ncut.
For the case of bisection, this can be achieved using the fol-
lowing steps [16], [17]:
1) Compute the first two eigenvectors 11, ¥9 of the general-
ized eigen-problem L¢} = AD?¥.
2) Let J € R™*2 be the matrix containing the vectors 91, >
as columns. Let 3; € R? be the vector corresponding to
the th row of J.
3) Cluster the nodes y; € R? into clusters ¢1, ¢o using a
clustering algorithm, such as the k-medoids algorithm.

III. TwWO-STEP SPECTRAL CLUSTERING
CONTROLLED ISLANDING ALGORITHM

In this section, the two-step SCCI algorithm, proposed for
solving the optimization problem expressed in (8), is presented.
Solving this optimization problem is equivalent to determining
a suitable islanding solution.

This solution can be found by constructing two graphs, based
on the objective function and constraint from (8), and applying
the SCCI algorithm to find the minimum cut of these two graphs.
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Fig. 2. Flowchart of the SCCI algorithm.

In the first step of the SCCI algorithm, the dynamic graph
Gp is constructed. It only contains the generator nodes and its
edge weights of this graph are the synchronizing coefficients
OP;;/06;; that describe the dynamic coupling between the
nodes 7 and j. To satisfy the generator coherency constraint (5),
the generator nodes are grouped using the normalized spectral
clustering algorithm, introduced in Section II-C2. These groups
of generator nodes then serve as constraints for the second step
of the SCCI algorithm.

In the second step of the algorithm, the static graph Gg is
constructed using power flow data. It contains every node and
the edge weights are defined as the absolute value of the active
power exchange between nodes ¢ and j, | P;;|. The nodes are
then grouped using constrained spectral clustering, which will
be described in this section, to solve the optimization problem
described in (8).

In Fig. 2, a flowchart depicting the execution of the SCCI
algorithm is presented. In the text below a detailed description
of both algorithm steps is presented.

A. Step 1: Determining Coherent Generator Groups

The coherent generator groups in the power system being
considered can be found by constructing a graph that represents
the dynamic coupling between the generator nodes, referred to
as a dynamic graph. Normalized spectral clustering is then ap-
plied to this graph to cluster the generator nodes based on their
dynamic coupling.

A dynamic graph Gp(V g, Ep, W) can be constructed for
the m generator nodes by defining its Laplacian matrix Lp as
[21]

ar;;

o = — Vil V3] Bijcos(6i — 6;) ifi#
L PR — T
| D]” - 2 [Lply ifi=j
I=T,i#i
(11)

where B! ; is the imaginary entry of the network admittance ma-
trix, reduced to the internal generator nodes [18]. The dynamic
graph Gp describes the dynamic coupling between generator
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nodes; its edge weights are defined as the synchronizing coeffi-
cient 8P7] /857] .

Using the Laplacian Matrix L, the linearized second-order
dynamic model of the m-generator power system can be
rewritten as [18]

Mx = Lpx (12)

where M = d’i(Lg(zﬂl/W(], 2H2/u}(], ey 2Hm/w()) and is the
inertia matrix.

From (4) and (10), it can be observed that (4) is a kind of
Ncut of the dynamic graph Gp, where the graph is normalized
by node inertia rather than node weight. By applying normal-
ized spectral clustering to the dynamic graph Gp, the minimum
Ncut of Gp, i.e., the solution of the optimization problem (5),
can be found [17].

The first step of the SCCI algorithm can thus be executed as
follows:

1) Construct the dynamic graph Gp using only generator

nodes, and with edge weights equal to 9F;;/06;;.

2) Compute the first two eigenvectors 1, @2 of the general-
ized eigen-problem Lp¥ = AM.

3) LetJ € R"*? be the matrix containing the vectors 91, ©»
as columns. Let y; € R? be the vector corresponding to
the ith row of the matrix J.

4) The nodes y; € R?Z are then clustered into sub-sets Vg1
and Vg2 using the k-medoids algorithm.

5) Select Vg1 or Vga as the node set of a new dynamic

graph and return to 1) to allow recursive bisection.

The first step of the SCCI algorithm is equivalent to the appli-
cation of methods based on the theory of slow coherency. Slow
coherency based methods group generators using the eigenvec-
tors of the state matrix A . Ifthe inertiamatrix M isinvertible, then
(2) and (12) are actually identical, assuming that A = M~ Lp.

The slow coherency method is useful for offline analysis, but
has some drawbacks if implemented in online applications. It is
difficult to determine if the generators will retain coherency, or
which oscillatory mode is excited by the disturbance that has oc-
curred.

However, how to combine and satisfy the constraints necessary
to enforce the coherent generator groups during islanding, rather
than how to identify the coherent generators, is the key challenge
addressed in this paper. The drawbacks of slow coherency can
be overcome by using a revised slow coherency algorithm [2] or
online coherency identification algorithms [23], [24].

B. Step 2: Minimizing the Power-Flow Disruption While
Preserving Coherent Generator Groups

The islanding solution that will separate the coherent gen-
erator groups found in Step 1, with the minimum power-flow
disruption, can be found by applying constrained spectral clus-
tering to a static graph of the power system.

This static graph Gs (V,Eg, Wg) can be constructed for
an n-node power system using power flow data to describe the
active power exchange between each of the n nodes.

The issue of losses within the system must be accounted for
to produce the symmetric undirected graph necessary for the ap-
plication of spectral clustering. To ensure that the matrix Wy is
symmetric, the elements of W is defined as (| P;;| + |Pj:|) /2.

The Laplacian Matrix Lg of the static graph Gg can then be
expressed as [21]

PultPil — — V| [V}] By sin(s: — 8;) if i # j

Ll =Y - 3 (L), ifi=
1=1,1#i )

(13)

where B;; is the imaginary entry of the network admittance ma-
trix.

The minimal power-flow disruption of the graph Gg is the
solution of (7). However, to solve (8), the generator coherency
constraint must be included. This is done by including the gen-
erator groups, obtained in the first step, as pair-wise constraints
in the second step of the algorithm [26].

The pair-wise generator coherency constraints consist of 1)
Must-Link constraints and 2) Cannot-Link constraints; these are
defined as follows:

1) Must-Link constraints: all the generator nodes within a

first-step group must be linked at the second step.
2) Cannot-Link constraints: any two generator nodes in dif-
ferent first-step groups cannot be linked at the second step.

Constrained spectral clustering is an efficient method for
solving clustering problems with pair-wise constraints. The
pair-wise constraints can be included by modifying the solution
subspace using a projection matrix (the subspace approach)
[26].

Without loss of generality, it can be assumed that the first 171
nodes belong to the cluster ¢; and the next 12 nodes belong to
the cluster c2. The projection matrix U can then be defined as
follows [26]:

1m,1 1m,1 Oml X (n—m)
U= 1m,2 _1711,2 Om; X (n—m) (14)
1oom Onm I(nfm) X (n—m)

where I is the identity matrix, 1 is the all-ones column vector,
and 0 is the zero matrix or zero column vector.
In this way, the solution subspace is projected from an n-di-
mension space to an (n — m +2)-dimension space, where (m =
my + ms). All nodes of the same cluster in the n-dimension
space are represented by one equivalent node in the (n — m +
2)-dimension space to satisfy the pair-wise constraints.
With the introduction of the projection matrix U, constrained
spectral clustering can be applied to the static graph Gg to find
the cutset with minimal power-flow disruption that satisfies the
generator grouping constraints produced in the first step of the
SCCI algorithm. The second step of the SCCI algorithm can
thus be described as follows:
1) Construct a static graph Gg of all nodes with the edge
weights defined as (| P;;| + |Pj:l) /2.

2) Construct the projection matrix U based on the generator
grouping results.

3) Compute the first two eigenvectors 11, ¥} of the general-
ized eigen-problem UTLgU¢ = AUTUY.

4) Let J € R"*? be the matrix containing the vectors U4,
Uy as columns. Let y; € R? be the vector corresponding
to the +th row of J.

5) Cluster the nodes y; € R? into the clusters V1, Vo using
the k-medoids algorithm.
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6) Select V1 or Va3 as the node set of a new static graph and
return to 1).

Using the two-step SCCI algorithm, described above, the so-
lution of the optimization problem (8), i.e., the islanding solu-
tion, can be found.

The second step of SCCI algorithm could be used with any
online coherency identification method, provided that coherent
generator groups are available to serve as constraints.

IV. SCCI ALGORITHM TESTING

In this Section, three test systems are used to validate the
proposed SCCI algorithm [27]:
I) IEEE 9-bus test system
1) IEEE 39-bus test system
IIT) IEEE 118-bus test system [28].

For every test system, the SCCI algorithm has been applied
and an islanding solution found. These solutions are compared
with those obtained using the spectral k-way partitioning algo-
rithm (SkP) and an OBDD method to evaluate the quality of the
SCCI algorithm solution.

1) Spectral k-Way Partitioning (SkP): The SKkP method in-
troduced in [12] does not consider the generator coherency con-
straint; a comparison with this method in Test Case I is used
to demonstrate that the generator coherency constraint is neces-
sary to form stable islands.

SKP is a special case of the un-normalized spectral clustering
algorithm described in Section II-C1. In the third step of the
algorithm, instead of using k-medoids, to cluster the nodes
reference nodes are selected and then the remaining nodes are
clustered to these reference nodes according to the distance be-
tween the node and the reference nodes.

2) Ordered Binary Decision Diagram (OBDD): OBDD are
capable of searching the entire searching space and finding all
possible solutions [1]. Therefore, the comparisons with this
method in Test Case II and Test Case III are used to demon-
strate that the SCCI algorithm is capable of finding the optimal
solution of (8). The OBDD method described in [1], [3], and
[11] is revised to find the islanding solution with the minimal
power-flow disruption:

& =55C-MCC-MPD

m &
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Fig. 3. Dynamic graph and static graph of the IEEE 9-bus test system (base
power Sy = 100 MW). Right: the dotted line is the SCCI solution, while the
dash-dotted line is the SkP solution. (a) Dynamic graph. (b) Static graph.

where ® is the Boolean function of the OBDD method, A and
A" represent the adjacency matrix and reachability matrix of
graph Gg, respectively, and V7, represents the load node set of
graph Gg [1].

The SSC represents the requirement of generator coherency,
where the first item denotes that the generators of different co-
herent groups cannot be connected, the second item denotes that
the generators in the same coherent group must be connected,
and the third item denotes that every load must be connected to
one and only one coherent generator group [1], [3], [11].

The MCC is used to reduce the number of islanding solutions
by allowing only those edges that help to form islands to be
disconnected [11]. The MPD denotes that the power-flow dis-
ruption cannot exceed the threshold ¢, and it is used to replace
the power balance constraint (PBC) in [3] and [11].

A. Evaluating Solution Quality

1) Test Case I: IEEE 9-Bus Test System: The first step in
applying the SCCI algorithm to the IEEE 9-bus test system
was to construct the dynamic graph using (11), as shown in
Fig. 3(a). The normalized spectral clustering algorithm, de-
scribed in Section III-A, was then applied and two coherent
generator groups {1} and {2, 3} were found.

The second step of the SCCI algorithm required a static graph
to be constructed using (13), as shown in Fig. 3(b). The co-
herent generator groups are then used to construct a projec-
tion matrix (14) that represented the must-link constraint be-
tween generators 2 and 3, and the cannot-link constraint be-
tween generator 1 and generators 2 and 3. This projection matrix
allows the constrained spectral clustering algorithm, described
in Section III-B, to be used to cluster the nodes of the system.

Applying the SCCI algorithm to the IEEE 9-bus test system
resulted in finding a single cutset that created an islanding solu-
tion that consisted of two islands {1,4} and {2,3,5,6,7,8,9}.
This cutset is marked in Fig. 3(b) by a dotted line, the cut of
which is 0.65 p.u.

Application of the SKP method to the IEEE 9-bus test system
resulted in an islanding solution that consisted of two different
islands {3,6,9} and {1,2,4,5,7,8}. This cutset is marked in
Fig. 3(b) by a dash-dotted line, the cut of which is 0.50 p.u.

It is clear that the island {1, 2,4, 5,7, 8} is not stable because
it contains the unsynchronized generators 1 and 2. The solution
of the SCCI algorithm has a higher cut; this difference from the
solution of the SkP method represents the cost of satisfying the
generator coherency constraint.
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TABLE I
GENERATOR GROUPS IN THE FIRST STEP OF 39-BUS TEST SYSTEM

Group 1 Group 2 Group 3
G2,G3,G4,G5,G6,G7 G8,G9,G10 Gl
G9/

G10

30—+

Cutset 2

Cutset 1

Fig. 4. Single-line diagram of the IEEE 39-bus test system. The dotted lines
represent the two cutsets necessary to produce the final islanding solution.

TABLE II
THE 39-BUS TEST SYSTEM RESULTS COMPARISON WITH OBDD

Cutset 1 XPyl(MW) Method
1) 8-9, 34, 3-18,17-27 175.3 SCCI
1) 8-9, 3-4, 3-18,17-27 175.3
(2) 9-39, 3-4, 3-18, 17-27 179.0
(3) 8-9,3-4, 17-18, 17-27 331.2 OBDD
(4) 8-9, 34, 16-17 3343
(5)9-39, 3-4,17-18, 17-27 335.0

2) Test Case II: IEEE 39-Bus Test System: As in Test Case
I, the first step of the SCCI algorithm was applied to find the
dynamic graph of the IEEE 39-bus test system. The application
of normalized spectral clustering identified the set of generator
groups shown in Table I. From these groups, a set of pair-wise
generator constraints can be determined to form the projection
matrix.

The execution of the second step of the SCCI algorithm is
effected by there being three generator groups. This effect is
that the second step of the algorithm now requires the use of
recursive bisection to determine two cutsets and create three
islands.

The first cutset to be found, Cutset 1, separated Group 1 from
Group 2 and Group 3. The second cutset to be found, Cutset 2,
separated Group 3 from Group 2. Combined, these two cutsets
form the final islanding solution marked in Fig. 4.

The OBDD method was executed with a ¢ value of 335 MW
and the five solutions for Cutset 1 that had the smallest cuts
are shown in Table II, alongside the SCCI algorithm solution
for Cutset 1. It is obvious that the SCCI algorithm found the
minimum cut for separating Group 1 from Group 2 and Group
3. A comparison of Cutset 2 is not included because it would be
quite trivial for separating only one generator.

TABLE III
GENERATOR GROUPS OF 118-BUS TEST SYSTEM

Group 1 Group 2 Group 3
46,49,54,59,61,65,
10,12,25,26,31 66.69.80 87,89,100,103,111
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Fig. 5. Single-line diagram of the IEEE 118-bus power network. The two
dotted lines represent the cutsets necessary to produce the final islanding
solution.

3) Test Case Ill: IEEE 118-Bus Power System: The first step
of the SCCI algorithm returned the three coherent generator
groups given in Table III.

The two cutsets produced in the second step of the SCCI al-
gorithm, Cutset I and Cutset 2, separated Group 1 from Groups
2 and 3, and then separated Group 2 from Group 3, respectively.
Combined, these two cutsets form the final islanding solution
marked in Fig. 5.

As in Test Case II, the results returned by the OBDD method
will be used to validate the SCCI solution. Unfortunately, it is
not practical to apply the OBDD method directly to the 118-
node network. The original network is simplified to a 34-node
and 43-edge graph when searching for Cutset 1, and is simplified
to a 24-node and 38-edge graph when searching for Cutset 2.
The cutset solutions found for these simplified graphs were then
mapped onto the original graphs so that all possible solutions
in the original graphs are still found. The precise nature of the
simplified graphs and the mapping relationships are given in the
Appendix.

For both Cutset 1 and Cutset 2 the five cutsets with the
smallest cut that were found by the OBBD method are pre-
sented in Table IV, alongside which are the results returned by
the SCCI algorithm.

The comparison in Table IV shows that, as in Test Case 11, the
SCCI algorithm returned the cutset that separated the coherent
generator groups with minimum cut.

B. Computational Efficiency

The accuracy of the islanding solution produced is not the
sole measure of a controlled islanding algorithm performance.
The computational efficiency of the algorithm is also a key
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TABLE IV
THE 118-BuUs SYSTEM RESULTS COMPARISON WITH OBDD

ZIPy/

Cutset 1 o) Method
(1) 15-33, 19-34, 30-38, 23-24 71.6 SCCI
(1) 15-33, 19-34, 30-38, 23-24 71.6
(2) 15-33, 19-34,30-38, 24-70, 24-72 73.5
(3) 33-37, 19-34, 30-38, 23-24 76.3 OBDD
(4) 33-37, 19-34, 30-38, 24-70, 24-72 78.1
(5) 15-33, 19-34,30-38, 24-70, 71-72 83.2
Cutset 2 (ZA‘/;I;I;{)/ Method
(1) 77-82, 96-97, 80-96, 98-100, 80-99 52.7 SCCI
(1) 77-82, 96-97, 80-96, 98-100, 80-99 52.7
(2) 77-82, 96-97, 80-96, 98-100,99-100 573
(3) 77-82, 82-96, 94-96,95-96, 98-100, 80-99 65.1 OBDD
(4) 77-82, 80-97, 80-96, 98-100, 80-99 65.9
(5) 77-82, 82-96, 94-96,95-96, 98-100, 99-100 69.6
TABLE V
COMPUTATION TIME OF TEST CASES
Case Method Time(s)
39-bus SCCI ~0.004
118-bus SCCI ~0.11

* Pentium 2.4GHz; 4G RAM PC; Matlab 7.0 code.

index when evaluating the performance of a controlled is-
landing algorithm.

Using the minimal power-flow disruption as the objective
function means that the problem the SCCI algorithm solves is a
P-problem because it can be converted into a max-flow/min-cut
problem and solved efficiently [9], [16].

However, the introduction of the pair-wise constraints,
especially Cannot-Link constraints, necessary to include the
generator coherency constraint into the problem increases its
complexity. This increase in complexity makes the feasibility
problem of constrained spectral clustering NP-complete in sev-
eral situations, this means in polynomial time it is not possible
to identify if a solution that satisfies all constraints even exists
[29].

This increase in complexity can be overcome by using recur-
sive bisection to identify the islands. This is because this type
of problem can always be solved efficiently when the number
of clusters is two [29].

The search space for the controlled islanding problem solved
by the SCCI algorithm will be 2¢ for a graph with m gener-
ators, n nodes, and d edges. The major computational task in
spectral clustering is computing the eigenvectors of the Lapla-
cian matrix. So, the time complexity of the first step of the SCCI
algorithm is just O(m?), and the time complexity of the second
step of the SCCI algorithm is O((n — m +2)?). If deemed nec-
essary, this could be reduced to O((n — m + 2)*/3) as the Lg
matrix is a sparse matrix [15].

This degree of time complexity means that the SCCI algo-
rithm is computationally efficient. The computational times for
Test Case II and III are shown in Table V.

As mentioned in Section I, solving the problem of controlled
islanding for a minimal power imbalance objective function is
an NP-hard problem, a type of problem that cannot be solved in
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Fig. 6. Simplified graphs of 118-bus system for OBDD. (a) Simplified 34-node,
43-edge graph for Cutset 1. (b) Simplified 24-node, 38-edge graph for Cutset 2.

polynomial time, with existing algorithms, as the computational
time is exponential in order [9], [11]. Thus, using the minimal
power-flow disruption has the benefit of reducing the time com-
plexity of the problem from NP-hard to P, and making the pro-
posed SCCI algorithm computationally efficient.

V. CONCLUSION

This paper proposes a novel two-step SCCI algorithm for de-
termining islanding solutions for power systems. At the core
of this algorithm is a single optimization problem that uses the
minimal power-flow disruption as objective function and con-
siders ensuring generator coherency as a constraint.

Using the minimal power-flow disruption as the objective
function, instead of the minimal power imbalance, improves
the transient stability of the islands produced, reduces the time
complexity of the problem and allows a computationally effi-
cient algorithm to be developed. The inclusion of the generator
coherency constraints prevents islands from being formed that
contain non-coherent generators or isolated loads. Three test
cases have been considered to evaluate the algorithm. The re-
sults show that the novel SCCI algorithm is computationally
efficient and is suitable for use as a real time application, partic-
ularly in large power systems.

APPENDIX

This appendix contains the simplified graphs, Fig. 6, used in
Test Case III (Section IV-A3) and the mapping relationship be-
tween these simplified graphs and the original graph, Tables VI
and VII.

The simplified graphs were created with the intent of pre-
serving the network structure between the two coherent gener-
ator groups as much as possible, while reducing the remaining
network as much as possible.

If a new edge in Tables VI and VII has several mapping cut-
sets in the original graph, only the one with minimum weight
is selected as the new edge, the others will be considered when
mapping the solution found back onto the original graph so that
all of the possible solutions will still be found.

For example, the new edge 12—-17 in Table VI has two
mapping cutsets (15-17,12—-16) and (15-17,16-17) with the
weight 94.8 and 105.0, respectively. The weight of the new
edge 12—-17 will be designated as 94.8. If the new edge 12—-17



TABLE VI
MAPPING NODES AND EDGES OF SIMPLIFIED GRAPH 1

New node  Original nodes New node Original nodes
12 1-14,16,117 49 46-58
31 25-29,31-32,113-115 71 71,73
65 59-68,78-112,116 77 76-77,118
New edge Original cutsets New edge Original cutsets
23-31 (23-32,23-25) 24-72 (24-70,24-72)
71-72 (24-70,71-72) 70-71 (24-70,70-71)
37-39 (37-39,37-40) 39-40 (39-40,37-40)
40-41 (40-41,40-42) 41-42 (41-42,40-42)
45-49 (45-46,45-49) 49-65 (49-66,47-69,49-69)
70-74 (70-74,70-75) 74-75 (70-75,74-75)
New edge Original cutsets
12-15 (15-17,14-15,13-15);(15-17,12-14,13-15)

(15-17,14-15,11-13);(15-17,12-14,11-13)

12-17 (15-17,12-16);(15-17,16-17)

17-31 (17-31,17-113,26-30);(17-31,113-32,26-30)
6569  (69-68, 47-69,49-69);(65-68,68-81,47-69,49-69)
69-77 (69-77,68-81);(69-77,80-81)

75-77 (75-71,75-118); (75-71,76-77); (15-71,76-118)

TABLE VII
MAPPING NODES AND EDGES OF SIMPLIFIED GRAPH 2

New node  Original nodes New node Original nodes
69 1-20,33-69,81,116,117 89 88-89
70 21-32,70-73,113-115 92 90-92
85 85-87 100 100-112
New edge Original cutsets

69-80 (68-69,68-65);(68-81);(80-81)

85-89 (85-88,85-89);(88-89,35-89)

89-92 (80-90,89-92);(90-91,89-92);(91-92,89-92)

92-100  (92-100,92-102);(92-100,101-102);(92-100,100-101)

is in the solution produced, the mapping cutsets (15-17,12—-16)
or (15-17,16—17) are possible elements of the final solution for
the original graph.
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