he objective of the course is to present the main aspects related to the frequency control and stability of modern power systems. This course focuses on frequency, and as a consequence, a comprehensive understanding of the dynamic processes in electrical power systems is presented, the core is based on the electromechanical dynamics of synchronous generators, the response in the frequency of the components of the power system, and control of the frequency in multi-machine systems. Special topics of modelling of power electronic components are considered.
Unit 1: Introduction to the electrical frequency in power systems. The motivation of the Power system changes
Unit 2: Fundamentals of electrical frequency in electrical power systems
Unit 3: Frequency Control in power system
Unit 4: Emergency frequency control
Unit 5: Frequency response of power electronic-based technologies
Educational Area: Prof F. Gonzalez-Longatt
Warning: getimagesize(/home/fglon062/moodledata/filedir/18/e1/18e10e1812413862a32ebafbea855af946611069): Failed to open stream: No such file or directory in /home/fglon062/public_html/Educational/lib/filestorage/file_system.php on line 409
Skip available courses
Available courses
- Introduction to time series
- Introduction to time-dependant modelling and simulation.
- Definition of Quasi-Dynamic Simulation.
- Pros and cons of using scenarios versus quasi-dynamic modelling.
- Quasi-dynamic calculation function in DIgSILENT PowerFactory (ComStatSim)
- Configuration of the quasi-dynamic calculation function in DIgSILENT PowerFactory (ComStatSim).
- Load profile time characteristics.
- Quasi-dynamic simulation language (QDsl)
- Quasi-dynamic modelling in powerfactory
- Example: Calculation of total active power losses and energy over a year.
- Photovoltaic system. Geo-dependant model and panel characteristics.
- Example: Duck curve example.
- Example: Congestion of transmission lines in rich-PV areas. Mitigation measures.
This course is dedicated to providing a comprehensive overview of the leading modelling and simulation tools used in PECs-dominated power systems.
The course starts with an overview of PEC-dominated power
system characteristics and modelling and aspects. A discussion about the
limitations of traditional off-line RMS and EMT simulations, the concept of co-simulation
and examples are presented, and then the concept of digital real-time
simulation and its implications in PECs-dominated power systems. Finally, an
introduction to the use of digital real-time simulation is presented in the
context of rapid prototyping, hardware-in-the-loop (HIL),
power-hardware-in-the-loop (PHIL), the relay in the loop and other paradigms.
- SECTION I: Background
- SECTION II: Off-Line Simulations
- SECTION III: Co-simulation
- SECTION IV: Digital Real-Time Simulation
Esta asignatura inicia con la clasificación y descripción de los distintos tipos de estabilidad de los sistemas eléctricos en régimen permanente, continúa con las generalidades de la estabilidad de pequeña señal proporcionando los fundamentos para mejorar este tipo de estabilidad en un SEP; estudia los conceptos de estabilidad de ángulo, frecuencia y voltaje, tanto de corto y largo plazo, y para finalizar, describirá las características y modelación de los sistemas de transmisión HVDC y sistemas de compensación FACTS utilizados en los sistemas eléctricos de potencia.
- UNIT 1: Conceptual description of stability, Stability classification, Modeling of the elements of the system for the study of stability, Transient stability
- UNIT 2: Small signal stability
- UNIT 3: Voltage stability
- UNIT 4: Frequency stability and control
- UNIT 5: FACTS devices and HVDC
- Teacher: Francisco Gonzalez-Longatt
Esta asignatura inicia con la clasificación y descripción de los distintos tipos de estabilidad de los sistemas eléctricos en régimen permanente, continúa con las generalidades de la estabilidad de pequeña señal proporcionando los fundamentos para mejorar este tipo de estabilidad en un SEP; estudia los conceptos de estabilidad de ángulo, frecuencia y voltaje, tanto de corto y largo plazo, y para finalizar, describirá las características y modelación de los sistemas de transmisión HVDC y sistemas de compensación FACTS utilizados en los sistemas eléctricos de potencia.
Esta asignatura inicia con la clasificación y descripción de los distintos tipos de estabilidad de los sistemas eléctricos en régimen permanente, continúa con las generalidades de la estabilidad de pequeña señal proporcionando los fundamentos para mejorar este tipo de estabilidad en un SEP; estudia los conceptos de estabilidad de ángulo, frecuencia y voltaje, tanto de corto y largo plazo, y para finalizar, describirá las características y modelación de los sistemas de transmisión HVDC y sistemas de compensación FACTS utilizados en los sistemas eléctricos de potencia.
Esta asignatura inicia con la clasificación y descripción de los distintos tipos de estabilidad de los sistemas eléctricos en régimen permanente, continúa con las generalidades de la estabilidad de pequeña señal proporcionando los fundamentos para mejorar este tipo de estabilidad en un SEP; estudia los conceptos de estabilidad de ángulo, frecuencia y voltaje, tanto de corto y largo plazo, y para finalizar, describirá las características y modelación de los sistemas de transmisión HVDC y sistemas de compensación FACTS utilizados en los sistemas eléctricos de potencia.
Aims and Summary
- To introduce to the students of other disciplines the fundamental principles and concepts of electrotechnology.
Aims and Summary
This course is intended for mechanical engineers
- To give students a basic understanding of electrical technology as used in mechanical engineering applications.
- To introduce electrical machines and power systems and their practical applications, supported by practical analysis/synthesis methods of sufficient mathematical depth.
- UNIT 1: AC Steady-State
- UNIT 2: Three-Phase Systems
- UNIT 3: Magnetic Circuits
- UNIT 4: Single-Phase transformer
- UNIT 5: DC Machines
- UNIT 6: Induction Machines
Aims and Summary
- Explain how electromagnetic phenomena underpin practical electromechanical energy conversion systems.
- Develop an understanding of the way in which ferromagnetic material behaviour influences energy conversion systems.
- Develop the concept of equivalent circuit models of practical energy conversion systems.
- UNIT 1. Introduction to electrical systems
- UNIT 2. Magnetic materials and losses
- UNIT 3. Magnetic circuits
- UNIT 4. Single-phase transformers
- UNIT 5. Electromechanical system fundamentals
- UNIT 6. Three-phase induction motors
Esta asignatura inicia con la clasificación y descripción de los distintos tipos de estabilidad de los sistemas eléctricos en régimen permanente, continúa con las generalidades de la estabilidad de pequeña señal proporcionando los fundamentos para mejorar este tipo de estabilidad en un SEP; estudia los conceptos de estabilidad de ángulo, frecuencia y voltaje, tanto de corto y largo plazo, y para finalizar, describirá las características y modelación de los sistemas de transmisión HVDC y sistemas de compensación FACTS utilizados en los sistemas eléctricos de potencia.
- Teacher: Francisco Gonzalez-Longatt
Esta asignatura inicia con la clasificación y descripción de los distintos tipos de estabilidad de los sistemas eléctricos en régimen permanente, continúa con las generalidades de la estabilidad de pequeña señal proporcionando los fundamentos para mejorar este tipo de estabilidad en un SEP; estudia los conceptos de estabilidad de ángulo, frecuencia y voltaje, tanto de corto y largo plazo, y para finalizar, describirá las características y modelación de los sistemas de transmisión HVDC y sistemas de compensación FACTS utilizados en los sistemas eléctricos de potencia.
- Teacher: Francisco Gonzalez-Longatt
This course provides the skills to perform model verification and simulation of electrical systems starting from classical circuit analysis until power system analysis. The course uses an approach that combines a theoretical explanation of the phenomenon with practical verification using simulation using the Hardware in the Loop (HIL) paradigm.
SECTION I: STEADY-STATE RESPONSE
- UNIT 1: DC Steady-state Mesh Analysis
- UNIT 2: AC Steady-state: Phasor and Time-domain
- UNIT 3: Three-phase power system, load flow analysis
SECTION II: DYNAMIC RESPONSE
- UNIT 4: RL transient using AC supply
- UNIT 5: Short-circuit in a synchronous generator
- UNIT 6: Frequency response of a power systems
- Teacher: Francisco Gonzalez-Longatt
In this course, students will learn how to define protection settings in real-life situations, and how to validate the settings, logic, and design of protection systems by using the concept of relay-in-the-loop and real-time simulations
- UNIT 1: Testing protection relays
- UNIT 2: Real-time simulation for testing and validation of protection functions.
- UNIT 3: Implementation of Relay-in-the-loop
- UNIT 4: Overcurrent protection
- UNIT 5: Distance protection
- Teacher: Francisco Gonzalez-Longatt
This course provides an overview of power electronic converters (PECs) and the main aspects to consider for its integration into the power systems. The focus of this course is to learn the main aspects of modelling PECs from the power system point of view and the use of digital simulation to assess the performance of the power system considering an appreciable integration of PECs.
The course closes with main aspects related to the monitoring and control of power converter dominated power systems.
- UNIT 1: Power electronic converters: fundamental concepts, classification. Commutation devices, commutation process.
- UNIT 2: Power electronic converter applications: Renewable generation
- UNIT 3: Modelling and simulation of PECs: EMT and RMS simulations.
- UNIT 4: Operation of PECs components inside the power systems: Voltage source converter (VSC) and Line commutated converter (LCC).
- Unit 5: Virtual Synchronous machine
- Unit 6: PECs in energy storage systems
- Unit 7: Grid following and grid forming converters
- Unit 8: Black start capability of PEC based technologies
- Unit 9: DC low voltage microgrids
- Unit 10: Phasor Measurements Units
- Unit 11: Wide Area Monitoring, Protection and Control (WAMPAC)
- Teacher: Francisco Gonzalez-Longatt
Power System Economics
The objective of the course is to present the main aspects related to the frequency control and stability on modern power systems.
This course focuses on frequency, as a consequence, a comprehensive understanding of the dynamic processes in electrical power system is presented, the core is based in the electromechanical dynamics of synchronous generators, the response in the frequency of the components of the power system, and control of the frequency in multi-machine systems.
Special topics of modelling of power electronic components are considered.
- Unit 1: Introduction to the electrical frequency in power systems. The motivation of the Power system changes
- Unit 2: Fundamentals of electrical frequency in electrical power systems
- Unit 3: Frequency Control in power system
- Unit 4: Emergency frequency control
- Unit 5: Frequency response of power electronic-based technologies
- Teacher: Francisco Gonzalez-Longatt
- UNIT 1: Conceptual description of stability
- UNIT 2: Stability classification
- UNIT 3: Modeling of the elements of the system for the study of stability
- UNIT 4: Angle stability
- UNIT 5: Voltage stability
- UNIT 6: Frequency stability and control
- UNIT 7: FACTS devices
- UNIT 8: Security in electrical power systems: Static security and Dynamic security
- Teacher: Francisco Gonzalez-Longatt