Available courses

Objetivo

Esta asignatura inicia con la clasificación y descripción de los distintos tipos de estabilidad de los sistemas eléctricos en régimen permanente, continúa con las generalidades de la estabilidad de pequeña señal proporcionando los fundamentos para mejorar este tipo de estabilidad en un SEP; estudia los conceptos de estabilidad de ángulo, frecuencia y voltaje, tanto de corto y largo plazo, y para finalizar, describirá las características y modelación de los sistemas de transmisión HVDC y sistemas de compensación FACTS utilizados en los sistemas eléctricos de potencia.

Contenido

  • UNIT 1: Conceptual description of stability, Stability classification, Modeling of the elements of the system for the study of stability, Transient stability
  • UNIT 2:  Small signal stability
  • UNIT 3: Voltage stability
  • UNIT 4: Frequency stability and control
  • UNIT 5: FACTS devices and HVDC

Objetivo

Esta asignatura inicia con la clasificación y descripción de los distintos tipos de estabilidad de los sistemas eléctricos en régimen permanente, continúa con las generalidades de la estabilidad de pequeña señal proporcionando los fundamentos para mejorar este tipo de estabilidad en un SEP; estudia los conceptos de estabilidad de ángulo, frecuencia y voltaje, tanto de corto y largo plazo, y para finalizar, describirá las características y modelación de los sistemas de transmisión HVDC y sistemas de compensación FACTS utilizados en los sistemas eléctricos de potencia.

Contenido

  • UNIT 1: Conceptual description of stability, Stability classification, Modeling of the elements of the system for the study of stability, Transient stability
  • UNIT 2:  Small signal stability
  • UNIT 3: Voltage stability
  • UNIT 4: Frequency stability and control
  • UNIT 5: FACTS devices and HVDC

This training provides a general overview from the most basic functionalities in PowerFactory up to the most advanced functions like Pyhton API, DPL and DSL.

Objective

This course provides an overview of power electronic converters (PECs) and the main aspects to consider for their integration into the power systems. The focus of this course is to learn the main aspects of modelling PECs from the power system point of view and the use of digital simulation to assess the performance of the power system considering an appreciable integration of PECs. 

The course closes with the main aspects related to the monitoring and control of power converter-dominated power systems.

Content

  • UNIT 1: Power electronic converters: fundamental concepts, classification. Commutation devices, commutation process.
  • UNIT 2: Power electronic converter applications: Renewable generation
  • UNIT 3: Modelling and simulation of PECs: EMT and RMS simulations.
  • UNIT 4: Operation of PECs components inside the power systems: Voltage source converter (VSC) and Line commutated converter (LCC).
  • Unit 5: Virtual Synchronous machine
  • Unit 6: PECs in energy storage systems
  • Unit 7: Grid following and grid forming converters
  • Unit 8: Black start capability of PEC-based technologies
  • Unit 9: DC low voltage microgrids
  • Unit 10: Phasor Measurements Units
  • Unit 11: Wide Area Monitoring, Protection and Control (WAMPAC)

OBJECTIVE 

The course aims to provide a solid understanding of the stability and control of the modern power system, taking into consideration the actions to be implemented on the system during abnormal conditions; especially emphasis on dynamic processes and power system stability.

It covers advanced concepts for building complex power systems models, and analysis techniques (dynamic-stability) to ensure the reliability and energy efficiency of the power system, considering the most recent advances in power electronics.

CONTENT  

  • UNIT 1: Conceptual description of stability, Stability classification, Modeling of the elements of the system for the study of stability, Transient stability
  • UNIT 2:  Small signal stability
  • UNIT 3: Voltage stability
  • UNIT 4: Frequency stability and control
  • UNIT 5: FACTS devices and HVDC

The objective of the course is to present the main aspects related to the frequency control and stability of modern power systems.

This course focuses on frequency, as a consequence, a comprehensive understanding of the dynamic processes in electrical power system is presented, the core is based in the electromechanical dynamics of synchronous generators, the response in the frequency of the components of the power system, and control of the frequency in multi-machine systems.

Special topics of modelling of power electronic components are considered.

  • Unit 1: Introduction to the electrical frequency in power systems. The motivation of the Power system changes.
  • Unit 2: Fundamentals of electrical frequency in electrical power systems.
  • Unit 3: Frequency Control in power system
  • Unit 4: Emergency frequency control
  • Unit 5: Frequency response of power electronic-based technologies.

The course aims to provide a solid understanding of the stability and control of the modern power system, taking into consideration the actions to be implemented on the system during abnormal conditions, especially emphasis on dynamic processes and power system stability.

 

It covers advanced concepts for building complex power systems models, and analysis techniques (dynamic-stability) to ensure the reliability and energy efficiency of the power system, considering the most recent advances in power electronics.

  • UNIT 1: Conceptual description of stability
  • UNIT 2:  Stability classification
  • UNIT 3:  Modeling of the elements of the system for the study of stability
  • UNIT 4:  Angle stability
  • UNIT 5: Voltage stability
  • UNIT 6: Frequency stability and control
  • UNIT 7: FACTS devices
  • UNIT 8: Security in electrical power systems: Static security and Dynamic security

Power System Economics 


This advanced course provides the main skill for modelling and simulation of modern electrical power systems using DIgSILENT PowerFactory.

The main focus of the course includes DIgSILENT Simulation Language and dynamic simulations of Inverter-based resources (IBR). 

This is a training on the advanced use of DIgSILENT PowerFactory in modelling and simulating modern power plant (traditional and non-traditional -inverter-based) systems.